Evaluate the integral "\\oint" ezt/z2+1 dz where c is the circle |z|=3.
Inside the contour "C=\\{z\\in\\mathbb{C}:|z|=3\\}", the function "\\frac{e^{zt}}{z^2+1}" has 2 simple poles at "z=i" and "z=-i". Hence, according to the residue theorem,
"\\oint\\limits_C \\frac{e^{zt}}{z^2+1}dz=2\\pi i({\\rm res}_{z=i}\\frac{e^{zt}}{z^2+1}+{\\rm res}_{z=-i}\\frac{e^{zt}}{z^2+1})"
"\\operatorname{res}_{z=i}\\frac{e^{zt}}{z^2+1}=\\lim\\limits_{z\\to i}\\frac{e^{zt}}{z^2+1}(z-i)=\\lim\\limits_{z\\to i}\\frac{e^{zt}}{z\n+i}=\\frac{e^{it}}{2i}"
"{\\rm res}_{z=-i}\\frac{e^{zt}}{z^2+1}=\\lim\\limits_{z\\to i}\\frac{e^{zt}}{z^2+1}(z+i)=\\lim\\limits_{z\\to i}\\frac{e^{zt}}{z\n-i}=-\\frac{e^{-it}}{2i}"
Therefore,
"\\oint\\limits_C \\frac{e^{zt}}{z^2+1}dz=2\\pi i(\\frac{e^{it}}{2i}-\\frac{e^{-it}}{2i})=2\\pi i\\sin t"
Answer. "\\oint\\limits_C \\frac{e^{zt}}{z^2+1}dz=2\\pi i\\sin t"
Comments
Leave a comment