Use the Binomial theorem, write the number (1 + 2i)^12 in the form a + ib.
"(1+2i)^{12}= \\dbinom{12}{0}1^{12}(2i)^0\n+ \\dbinom{12}{1}1^{11}(2i)^1\n+ \\dbinom{12}{2}1^{10}(2i)^2\n+ \\dbinom{12}{3} 1^9(2i)^3\n+ \\dbinom{12}{4}1^8(2i)^4\n+ \\dbinom{12}{5}1^7(2i)^5\n+ \\dbinom{12}{6}1^6(2i)^6\n+ \\dbinom{12}{7}1^5(2i)^7\n+ \\dbinom{12}{8} 1^4(2i)^8\n+\\dbinom{12}{9}1^3(2i)^9\n+ \\dbinom{12}{10}1^2(2i)^{10}\n+ \\dbinom{12}{11}1^1(2i)^{11}\n+ \\dbinom{12}{12}1^0(2i)^{12}=\\\\\n=1\\cdot 1+12\\cdot 2i-66\\cdot 4-220\\cdot 8i+495\\cdot 16+792\\cdot 32i-924\\cdot 64-792\\cdot 128i+495\\cdot 256+220\\cdot 512i-66\\cdot 1024-12\\cdot 2048i+1\\cdot 4096=\\\\\n=1+24i-264-1760i+7920+25344i-59136\u2013101376i+126720+112640i-67584-24576i+4096=\\\\\n= 11753-10296i"
Answer: "(1+2i)^{12}=11753-10296i"
Comments
Leave a comment