1. Comparing coefficients in the Laurent developments of cot (pi*z) and of its expression as a sum of partial fractions, find the values of sum 1 to infinity(1/n^ 2) ,
sum 1 to infinity(1/n^ 4) , sum 1 to infinity (1/n^ 6) .
"\\pi cot(\\pi z)=\\frac{1}{z}+2z\\displaystyle{\\sum^{\\infin}_{n=1}}\\frac{1}{z^2-n^2}"
"z\\pi cot(\\pi z)=1-2\\displaystyle{\\sum^{\\infin}_{n=1}}\\frac{z^2}{n^2-z^2}"
expand "\\frac{z^2}{n^2-z^2}" in Taylor series:
"\\frac{z^2}{n^2-z^2}=\\displaystyle{\\sum^{\\infin}_{i=1}}\\frac{z^{2i}}{n^{2i}}"
So:
"z\\pi cot(\\pi z)=1-2\\displaystyle{\\sum^{\\infin}_{i=1}}(\\displaystyle{\\sum^{\\infin}_{n=1}}\\frac{1}{n^{2i}})z^{2i}"
"(\\displaystyle{\\sum^{\\infin}_{n=1}}\\frac{1}{n^{2}})z^{2}+(\\displaystyle{\\sum^{\\infin}_{n=1}}\\frac{1}{n^{4}})z^{4}+(\\displaystyle{\\sum^{\\infin}_{n=1}}\\frac{1}{n^{6}})z^{6}+...=\\displaystyle{\\sum^{\\infin}_{n=1}}\\frac{z^2}{n^2-z^2}"
"\\displaystyle{\\sum^{\\infin}_{n=1}}\\frac{1}{n^{2}}+(\\displaystyle{\\sum^{\\infin}_{n=1}}\\frac{1}{n^{4}})z^{2}+(\\displaystyle{\\sum^{\\infin}_{n=1}}\\frac{1}{n^{6}})z^{4}+...=\\displaystyle{\\sum^{\\infin}_{n=1}}\\frac{1}{n^2-z^2}"
"\\displaystyle{\\sum^{\\infin}_{n=1}}\\frac{1}{n^{2}}=\\displaystyle{\\sum^{\\infin}_{n=1}}\\frac{1}{n^2-z^2}-(\\displaystyle{\\sum^{\\infin}_{n=1}}\\frac{1}{n^{4}})z^{2}-(\\displaystyle{\\sum^{\\infin}_{n=1}}\\frac{1}{n^{6}})z^{4}-...="
"\\displaystyle{\\sum^{\\infin}_{n=1}}\\frac{1}{n^{4}}=\\displaystyle{\\sum^{\\infin}_{n=1}}\\frac{1}{z^2(n^2-z^2)}-(\\displaystyle{\\sum^{\\infin}_{n=1}}\\frac{1}{z^2n^{2}})-(\\displaystyle{\\sum^{\\infin}_{n=1}}\\frac{1}{n^{6}})z^{2}-..."
"\\displaystyle{\\sum^{\\infin}_{n=1}}\\frac{1}{n^{6}}=\\displaystyle{\\sum^{\\infin}_{n=1}}\\frac{1}{z^4(n^2-z^2)}-(\\displaystyle{\\sum^{\\infin}_{n=1}}\\frac{1}{z^4n^{2}})-(\\displaystyle{\\sum^{\\infin}_{n=1}}\\frac{1}{z^2n^{4}})-..."
"\\frac{1}{n^2-z^2}=\\frac{1}{2z(n-z)}-\\frac{1}{2z(n+z)}"
"\\displaystyle{\\sum^{\\infin}_{n=1}}\\frac{1}{n^{2}}=\\displaystyle{\\sum^{\\infin}_{n=1}}(\\frac{1}{2z(n-z)}-\\frac{1}{2z(n+z)})-(\\displaystyle{\\sum^{\\infin}_{n=1}}\\frac{1}{n^{4}})z^{2}-(\\displaystyle{\\sum^{\\infin}_{n=1}}\\frac{1}{n^{6}})z^{4}-...="
"\\displaystyle{\\sum^{\\infin}_{n=1}}\\frac{1}{n^{4}}=\\displaystyle{\\sum^{\\infin}_{n=1}}(\\frac{1}{2z(n-z)}-\\frac{1}{2z(n+z)})-(\\displaystyle{\\sum^{\\infin}_{n=1}}\\frac{1}{z^2n^{2}})-(\\displaystyle{\\sum^{\\infin}_{n=1}}\\frac{1}{n^{6}})z^{2}-..."
"\\displaystyle{\\sum^{\\infin}_{n=1}}\\frac{1}{n^{6}}=\\displaystyle{\\sum^{\\infin}_{n=1}}(\\frac{1}{2z(n-z)}-\\frac{1}{2z(n+z)})-(\\displaystyle{\\sum^{\\infin}_{n=1}}\\frac{1}{z^4n^{2}})-(\\displaystyle{\\sum^{\\infin}_{n=1}}\\frac{1}{z^2n^{4}})-..."
Comments
Leave a comment