Use Cauchy’s integral formula to evaluate sin(z) /((2z + 1)*3e*z) dz
Cauchy’s integral formula:
"f(z_0)=\\frac{1}{2\\pi i}\\int_C \\frac{f(z)}{z-z_0}dz"
then:
"\\frac{sinz}{ 3ez(2z + 1)}=\\frac{sinz}{ 3e}\\cdot\\frac{1}{ z(2z + 1)}"
"\\frac{1}{ z(2z + 1)}=\\frac{1}{ z}-\\frac{2}{ 2z + 1}"
"\\int_C \\frac{sinz}{ 3ez(2z + 1)}dz=\\int_C \\frac{sinz}{ 3ez}dz-\\int_C \\frac{2sinz}{ 3e(2z + 1)}dz"
for "\\int_C \\frac{sinz}{ 3ez}dz" :
"f(z)=\\frac{sinz}{ 3e},z_0=0"
"f(0)=0\\implies \\int_C \\frac{sinz}{ 3ez}dz=0"
for "\\int_C \\frac{2sinz}{ 3e(2z + 1)}dz" :
"f(z)=\\frac{sinz}{ 3e},z_0=-1\/2"
"f(-1\/2)=-0.059"
so,
"\\int_C \\frac{sinz}{ 3ez(2z + 1)}dz=0.059\\cdot2\\pi i =0.369i"
Comments
Leave a comment