Suppose z0 is any constant complex number interior to any simple closed
contour C. Show that for a positive integer n,
∮
dz
(z−z0)
n = {
2πi, n = 1
C 0, n > 1.
Cauchy’s integral formula for derivatives:
"f^{(n)}(z_0)=\\frac{n!}{2\\pi i}\\int \\frac{f(z)}{(z-z_0)^{n+1}}dz"
we have:
"f(z)=1"
then:
for n = 1:
"f(z_0)=\\frac{1}{2\\pi i}\\int \\frac{1}{z-z_0}dz=1"
"\\int \\frac{1}{(z-z_0)^{n}}dz=2\\pi i"
for n > 1:
"f^{(n-1)}(z)=0"
"f^{(n-1)}(z_0)=\\frac{n!}{2\\pi i}\\int \\frac{1}{(z-z_0)^{n}}dz=0"
"\\int \\frac{1}{(z-z_0)^{n}}dz=0"
Comments
Leave a comment