What is the integral of 1/(z-1) (z-2) (2-4) dz where C is |z| = 3?
"\\displaystyle\n\\int_{|z|=3}\\frac{1}{(z-1) (z-2) (z-4)}\\ dz"
"\\displaystyle\n=\\frac{1}{3}\\int_{|z|=3}\\frac{1}{z-1}\\ dz+\\frac{1}{6}\\int_{|z|=3}\\frac{1}{z-4}\\ dz-\\frac{1}{2}\\int_{|z|=3}\\frac{1}{z-2}\\ dz"
But,
"\\displaystyle\n\\int_{|z|=3}\\frac{1}{z-1}\\ dz=2\\pi i", by Cauchy integral theorem.
"\\displaystyle\n\\int_{|z|=3}\\frac{1}{z-4}\\ dz=0", by Cauchy-Goursat theorem.
"\\displaystyle\n\\int_{|z|=3}\\frac{1}{z-2}\\ dz=2\\pi i", by Cauchy integral theorem.
Thus,
"\\displaystyle\n\\int_{|z|=3}\\frac{1}{(z-1) (z-2) (z-4)}\\ dz"
"\\displaystyle\n=\\frac{1}{3}\\int_{|z|=3}\\frac{1}{z-1}\\ dz+\\frac{1}{6}\\int_{|z|=3}\\frac{1}{z-4}\\ dz-\\frac{1}{2}\\int_{|z|=3}\\frac{1}{z-2}\\ dz"
"\\displaystyle\n=\\frac{1}{3}\\times 2\\pi i+\\frac{1}{6}\\times 0-\\frac{1}{2}\\times2\\pi i=-\\frac{\\pi i}{3}"
Comments
Leave a comment