From the definition of the Fourier transformation
"f(x)=\\frac{1}{\\sqrt{2\\pi}}\\int\\limits_{-\\infty}^{\\infty}F(t)e^{-itx}dt"
we obtain
"f(x)=\\int\\limits_{-1}^{0}(1+t)e^{-itx}dt+\\int\\limits_{0}^{1}(1-t)e^{-itx}dt=""=2\\int\\limits_{0}^{1}\\cos(tx)dt-2\\int\\limits_{0}^{1}t\\cos(tx)dt=2\\frac{\\sin(x)}{x}+2\\frac{1}{x^2}-2\\frac{\\cos (x)}{x^2}-2\\frac{\\sin (x)}{x}=""=2\\frac{1-\\cos(x)}{x^2}" Answer:
"f(x)=2\\frac{1-\\cos(x)}{x^2}"
Comments
Leave a comment