Find zeros of f(z)=sin hz
Draw in complex plane
{z∈R3 ; |x|+|y|+|z|<1}
Evaluate the integral 1/2"\\pi" i"\\oint"dz /z2(z2+2z+3), where c is the circle |z|=3.
By contour techniques"\\smallint" 1/(2+cos"\\theta") limit 0 to 2"\\pi" .
Evaluate the "\\oint"(12z-7)/(z-1)2(2z+3) dz where c is the circle |z+i|= Sqrt3
Evaluate the integral "\\oint" ez/z2+1 dz where c is the circle |z|=3.
Determine the poles and the residue at each pole of the function f(z)=1/(z-1)2(z+2)
Find the residue of the function f(z)=1/z(ez-1)
Prove ∇^2{FG} = F ∇^2 F + 2∇F•∇G
Find a function v such that f(z) = u+iv is analytic [i.e. find the conjugate function of u ].