Solve the equation (Bernoulli Differential Equation)
(2y^3 - x^3) dx + 3x^2y dx = 0
"(2y^3 - x^3) dx + 3x^2y dy = 0"
"\\frac{dx}{dy}=\\frac{-3x^2y}{2y^3-x^3}=\\frac{-3}{\\frac{2y^2}{x^2}-\\frac{x}{y}}"
"\\frac{y}{x}=v"
y=vx
"\\frac{dy}{dx}=v+x\\frac{dv}{dx}=\\frac{-3}{2v^2-\\frac{1}{v}}=\\frac{-3v}{2v^3-1}"
"x\\frac{dv}{dx}=\\frac{-3v}{2v^3-1}-v=\\frac{-2v-2v^4}{2v^3-1}"
"\\int\\frac{2v^3-1}{-2v-2v^4}dv=\\int\\frac{dx}{x}"
"-2v-2v^4=-v(2v^3-1)+3)"
"-2v-2v^4=t"
"(-2-8v^3)dv=dt"
"-4(2v^3-1+3)dv=dt"
"-4\\int\\frac{dt}{t}-4\\int3dv=\\int\\frac{dx}{x}"
-4log(t)-12v=log(x)+log(c)
"-4log(\\frac{t}{xc})-12v=-4log(\\frac{-2v(1+v^3)}{xc})-12v=-4log(\\frac{-2\\frac{y}{x}(1+(\\frac{y}{x})^3}{xc})-12\\frac{y}{x}=0"
"\\frac{-2y(1+(\\frac{y}{x})^3)}{x^2c}=e^{-3\\frac{y}{x}}"
Comments
Leave a comment