Answer to Question #215112 in Differential Equations for shai

Question #215112

Solve the equation (Bernoulli Differential Equation)


(2y^3 - x^3) dx + 3x^2y dx = 0


1
Expert's answer
2021-07-12T16:40:44-0400

"(2y^3 - x^3) dx + 3x^2y dy = 0"

"\\frac{dx}{dy}=\\frac{-3x^2y}{2y^3-x^3}=\\frac{-3}{\\frac{2y^2}{x^2}-\\frac{x}{y}}"

"\\frac{y}{x}=v"

y=vx

"\\frac{dy}{dx}=v+x\\frac{dv}{dx}=\\frac{-3}{2v^2-\\frac{1}{v}}=\\frac{-3v}{2v^3-1}"

"x\\frac{dv}{dx}=\\frac{-3v}{2v^3-1}-v=\\frac{-2v-2v^4}{2v^3-1}"

"\\int\\frac{2v^3-1}{-2v-2v^4}dv=\\int\\frac{dx}{x}"

"-2v-2v^4=-v(2v^3-1)+3)"

"-2v-2v^4=t"

"(-2-8v^3)dv=dt"

"-4(2v^3-1+3)dv=dt"

"-4\\int\\frac{dt}{t}-4\\int3dv=\\int\\frac{dx}{x}"

-4log(t)-12v=log(x)+log(c)

"-4log(\\frac{t}{xc})-12v=-4log(\\frac{-2v(1+v^3)}{xc})-12v=-4log(\\frac{-2\\frac{y}{x}(1+(\\frac{y}{x})^3}{xc})-12\\frac{y}{x}=0"

"\\frac{-2y(1+(\\frac{y}{x})^3)}{x^2c}=e^{-3\\frac{y}{x}}"







Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment