Given the equation:
"\\frac{d^{2} y(x)}{d x^{2}}-6 \\frac{d y(x)}{d x}+9 y(x)=\\frac{e^{3 x}}{x^{3}} :" The general solution will be the sum of the complementary solution and particular solution. Find the complementary solution by solving
"\\frac{d^{2} y(x)}{d x^{2}}-6 \\frac{d y(x)}{d x}+9 y(x)=0" Assume a solution will be proportional to "e^{\\lambda x}" for some constant "\\lambda" . Substitute "y(x)=e^{\\lambda x}" into the differential equation:
"\\frac{d^{2}}{d x^{2}}\\left(e^{x x}\\right)-6 \\frac{d}{d x}\\left(e^{\\lambda x}\\right)+9 e^{\\lambda x}=0" Substitute
"\\frac{d^{2}}{d x^{2}}\\left(e^{\\lambda x}\\right)=\\lambda^{2} e^{\\lambda x}"and
"\\frac{d}{d x}\\left(e^{\\lambda x}\\right)=\\lambda e^{\\lambda x}" We have:
"\\lambda^{2} e^{\\lambda x}-6 \\lambda e^{\\lambda x}+9 e^{\\lambda x}=0"
Factor out "\\boldsymbol{e}^{\\boldsymbol{\\lambda x}}" :
"\\left(\\lambda^{2}-6 \\lambda+9\\right) e^{\\lambda x}=0" Since "e^{\\lambda x} \\neq 0" for any finite "\\lambda" , the zeros must come from the polynomial:
"\\lambda^2 - 6\\lambda+9=0" Factor:
"(\\lambda-3)^2=0" Solving for "\\lambda" we get:
"\\lambda= 3 \\text{ twice}" The general solution of the equation is:
"y(x) = y_1(x) + y_2(x) = c_1e^{3x}+ c_2e^{3x}x"
We determine the particular solution to
"\\frac{d^{2} y(x)}{d x^{2}}-6 \\frac{d y(x)}{d x}+9 y(x)=\\frac{e^{3 x}}{x^{3}}" by variation of parameters.
We list the basis solutions in "y_c(x)" :
"y_{b_{1}}(x) = e^{3x} \\text{ and } y_{b_{2}}(x) = e^{3x} x" Compute the Wronskian of "y_{b_{1}}(x) \\text{ and } y_{b_{2}}(x) :"
"W(x)=\\left|\\begin{array}{cc}e^{3 x} & e^{3 x} x \\\\ \\frac{d}{d x}\\left(e^{3 x}\\right) & \\frac{d}{d x}\\left(e^{3 x} x\\right)\\end{array}\\right|=\\left|\\begin{array}{cc}e^{3 x} & e^{3 x} x \\\\ 3 e^{3 x} & e^{3 x}+3 e^{3 x} x\\end{array}\\right|=e^{6 x}" "\\text{Let }f(x)=\\frac{e^{3 x}}{x^{3}}:"
Let
"v_{1}(x)=-\\int \\frac{f(x) y_{b_{2}}(x)}{w(x)} d x" and
"v_{2}(x)=\\int \\frac{f(x) y_{b}(x)}{w(x)} d x" The particular solution will be given by:
"y_{p}(x)=v_{1}(x) y_{b_{1}}(x)+v_{2}(x) y_{b_{2}}(x)" Compute "v_{1}(x)" :
"v_{1}(x)=-\\int \\frac{1}{x^{2}} d x=\\frac{1}{x}" Compute "v_{2}(x)" :
"v_{2}(x)=\\int \\frac{1}{x^{3}} d x=-\\frac{1}{2 x^{2}}" The particular solution is thus:
"y_{p}(x)=v_{1}(x) y_{b_{1}}(x)+v_{2}(x) y_{b_{2}}(x)=\\frac{e^{3 x}}{x}-\\frac{e^{3 x}}{2 x}=\\frac{e^{3 x}}{2 x}" The general solution is therefore:
"y(x) = y_c(x) + y_p(x) = c_1e^{3x}+ c_2e^{3x}x +\\frac{e^{3 x}}{2 x}"
Comments
Leave a comment