Answer to Question #222281 in Differential Equations for alan

Question #222281

using the method of variation of parameters to determine the solution to the equation

d2y/dx2-6dy/dx+9y=e3x/x3

1
Expert's answer
2021-08-08T17:02:52-0400

Given the equation:


"\\frac{d^{2} y(x)}{d x^{2}}-6 \\frac{d y(x)}{d x}+9 y(x)=\\frac{e^{3 x}}{x^{3}} :"

The general solution will be the sum of the complementary solution and particular solution. Find the complementary solution by solving


"\\frac{d^{2} y(x)}{d x^{2}}-6 \\frac{d y(x)}{d x}+9 y(x)=0"

Assume a solution will be proportional to "e^{\\lambda x}" for some constant "\\lambda" . Substitute "y(x)=e^{\\lambda x}" into the differential equation:


"\\frac{d^{2}}{d x^{2}}\\left(e^{x x}\\right)-6 \\frac{d}{d x}\\left(e^{\\lambda x}\\right)+9 e^{\\lambda x}=0"

Substitute


"\\frac{d^{2}}{d x^{2}}\\left(e^{\\lambda x}\\right)=\\lambda^{2} e^{\\lambda x}"

and


"\\frac{d}{d x}\\left(e^{\\lambda x}\\right)=\\lambda e^{\\lambda x}"

We have:



"\\lambda^{2} e^{\\lambda x}-6 \\lambda e^{\\lambda x}+9 e^{\\lambda x}=0"


Factor out "\\boldsymbol{e}^{\\boldsymbol{\\lambda x}}" :


"\\left(\\lambda^{2}-6 \\lambda+9\\right) e^{\\lambda x}=0"

Since "e^{\\lambda x} \\neq 0" for any finite "\\lambda" , the zeros must come from the polynomial:


"\\lambda^2 - 6\\lambda+9=0"

Factor:


"(\\lambda-3)^2=0"

Solving for "\\lambda" we get:


"\\lambda= 3 \\text{ twice}"

The general solution of the equation is:


"y(x) = y_1(x) + y_2(x) = c_1e^{3x}+ c_2e^{3x}x"



We determine the particular solution to


"\\frac{d^{2} y(x)}{d x^{2}}-6 \\frac{d y(x)}{d x}+9 y(x)=\\frac{e^{3 x}}{x^{3}}"

by variation of parameters.


We list the basis solutions in "y_c(x)" :


"y_{b_{1}}(x) = e^{3x} \\text{ and } y_{b_{2}}(x) = e^{3x} x"

Compute the Wronskian of "y_{b_{1}}(x) \\text{ and } y_{b_{2}}(x) :"



"W(x)=\\left|\\begin{array}{cc}e^{3 x} & e^{3 x} x \\\\ \\frac{d}{d x}\\left(e^{3 x}\\right) & \\frac{d}{d x}\\left(e^{3 x} x\\right)\\end{array}\\right|=\\left|\\begin{array}{cc}e^{3 x} & e^{3 x} x \\\\ 3 e^{3 x} & e^{3 x}+3 e^{3 x} x\\end{array}\\right|=e^{6 x}"

"\\text{Let }f(x)=\\frac{e^{3 x}}{x^{3}}:"


Let


"v_{1}(x)=-\\int \\frac{f(x) y_{b_{2}}(x)}{w(x)} d x"

and


"v_{2}(x)=\\int \\frac{f(x) y_{b}(x)}{w(x)} d x"

The particular solution will be given by:


"y_{p}(x)=v_{1}(x) y_{b_{1}}(x)+v_{2}(x) y_{b_{2}}(x)"

Compute "v_{1}(x)" :


"v_{1}(x)=-\\int \\frac{1}{x^{2}} d x=\\frac{1}{x}"

Compute "v_{2}(x)" :


"v_{2}(x)=\\int \\frac{1}{x^{3}} d x=-\\frac{1}{2 x^{2}}"

The particular solution is thus:


"y_{p}(x)=v_{1}(x) y_{b_{1}}(x)+v_{2}(x) y_{b_{2}}(x)=\\frac{e^{3 x}}{x}-\\frac{e^{3 x}}{2 x}=\\frac{e^{3 x}}{2 x}"

The general solution is therefore:


"y(x) = y_c(x) + y_p(x) = c_1e^{3x}+ c_2e^{3x}x +\\frac{e^{3 x}}{2 x}"

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment