solve the differential equation by the method of variation of parameters d²y/dx²+9y=sec3x
The given differential equation can be written as;
"(D^2+9)y=sec3x , where\\ D=\\frac{d}{dx}"
Auxiliary equation is "(D^2+9)=0"
"\\implies D=\\pm3i"
Hence, C.F is,
"y_c=C_1\\ cos3x+C_2\\ sin3x"
Now we take "y_1=cos 3x, y_2=sin3x"
"w=\\begin{vmatrix}\n y_1 & y_2 \\\\\n y_1' & y_2'\n\\end{vmatrix}=\\begin{vmatrix}\n cos3x & sin3x \\\\\n -3sin3x & 3cos3x\n\\end{vmatrix}=3"
Particular integral is,
"y_p=-y_1\\int \\frac{y_2X}{w}dx+y_2\\int \\frac{y_1X}{w}dx"
"=-cos3x\\int \\frac{sin3xsec3x}{3}dx+sin3x\\int \\frac{cos3xsec3x}{3}dx"
"=-\\frac{cos3x}{3}\\int tan3xdx+\\frac{sin3x}{3}\\int dx"
"=\\frac{cos 3x\\ log(cos3x)}{9}+\\frac{x\\ sin3x}{3}"
Hence, the general solution is;
y(x)="y_c+y_p"
"y(x)=C_1\\ cos3x+C_2\\ sin3x+\\frac{cos 3x\\ log(cos3x)}{9}+\\frac{x\\ sin3x}{3}"
Comments
Leave a comment