I.In each of Problems 23 through 30, use the method of reduction of order to find a second solution of the given differential equation.
1. t2y″ − 4ty′ + 6y = 0, y1(t) = t2
2. xy″ − y′ + 4x3y = 0, x > 0; y1(x) = sin x2
1.
We seek a solution of the form "y(t) = v(t)y_1(t)." This gives us
"y'(t)=v't^2+2tv"
"y''(t)=v''t^2+4tv'+2v"
Substitute
"t^4v'' = 0"
"v''=0"
Integrate
Integrate
"v=c_1t+c_2"Therefore, the general solution is
"y(t)=c_1t^3+c_2t^2"
The second solution is "y_2(t)=t^3."
2.
We seek a solution of the form "y(x) = v(x)y_1(x)." This gives us
"y'(x)=v'\\sin(x^2)+2x\\cos(x^2)v"
"y''(x)=v''\\sin(x^2)+2x\\cos(x^2)v'+2\\cos(x^2)v"
"-4x^2\\sin(x^2)v+2x\\cos(x^2)v'"
Substitute
"-4x^3\\sin(x^2)v-\\sin(x^2)v'-2x\\cos(x^2)v"
"+4x^3\\sin(x^2)v(x)=0"
"x\\sin(x^2)v''+4x^2\\cos(x^2)v'-\\sin(x^2)v'=0"
"x\\sin(x^2)v''=(-4x^2\\cos(x^2)+\\sin(x^2))v'"
"\\dfrac{v''}{v'}=-4x\\cos(x^2)+\\dfrac{\\sin(x^2)}{x}""d(\\ln(v'))=(-4x\\dfrac{\\cos(x^2)}{\\sin(x^2)}+\\dfrac{1}{x})dx"
Integrate
Find
"u=\\sin(x^2), du=2x\\cos(x^2)dx"
"-\\int4x\\dfrac{\\cos(x^2)}{\\sin(x^2)}dx=-2\\int \\dfrac{du}{u}=-2\\ln(u)+\\ln C_1"
"=-2\\ln(\\sin(x^2))+\\ln C_1"
"\\ln(v')=\\ln(\\sin^{-2}(x^2))+\\ln(x)+\\ln C_1"
"v'=\\dfrac{C_1 x}{\\sin^2(x^2)}"
Integrate
Find
"u=x^2, du=2xdx"
"\\int\\dfrac{C_1 x}{\\sin^2(x^2)}dx=\\dfrac{C_1}{2}\\int\\dfrac{1}{\\sin^2(u)}du"
"=C_2\\cot(u)+C_3=C_2\\cot(x^2)+C_3"
"v(x)=C_2\\cot(x^2)+C_3"
Then
"=C_2\\cos(x^2)+C_3\\sin(x^2)"
Therefore, the general solution is
The second solution is "y_2(x)=\\cos(x^2)."
Comments
Leave a comment