y'''' + 3y''' + 3y' + y = x*e^(-x) + x*cosx - 7 + x^(2) *e^(-x) *sinx
The corresponding homogeneous equation
Characteristic (auxiliary) equation
"(r+1)^3=0"
"r_1=r_2=r_3=-1"
The general solution of the homogeneous differential equation is
Find the partial solution of the nonhomogeneous differential equation
"y_1'(x)=(-Ax^4-Bx^3+4Ax^3+3Bx^2)e^{-x}"
"y_1''(x)=(Ax^4+Bx^3-4Ax^3-3Bx^2)e^{-x}"
"+(-4Ax^3-3Bx^2+12Ax^2+6Bx)e^{-x}"
"y_1'''(x)=(-Ax^4-Bx^3+8Ax^3)e^{-x}"
"+(6Bx^2-12Ax^2-6Bx)e^{-x}"
"+(-12Bx+24Ax+6B)e^{-x}"
Substitute
"+(6Bx^2-12Ax^2-6Bx)e^{-x}"
"+(-12Bx+24Ax+6B)e^{-x}"
"+3(-4Ax^3-3Bx^2+12Ax^2+6Bx)e^{-x}"
"+3(-Ax^4-Bx^3+4Ax^3+3Bx^2)e^{-x}"
"+(Ax^4+Bx^3)e^{-x}+C =xe^{-x} - 7"
"x^4e^{-x}:0=0"
"x^3e^{-x}:0=0"
"x^2e^{-x}:0=0"
"x^1e^{-x}:24A=1"
"x^0e^{-x}:B=0"
"x^0:C=-7"
The partial solution of the nonhomogeneous differential equation
is
"y_1(x)=\\dfrac{x^4e^{-x}}{24}"
Find the partial solution of the nonhomogeneous differential equation
"y_2(x)=Ax\\cos x+Bx\\sin x+C\\cos x+D\\sin x"
"y_2'(x)=A\\cos x-Ax\\sin x+B\\sin x+Bx\\cos x"
"-C\\sin x+D\\cos x"
"y_2''(x)=-2A\\sin x-Ax\\cos x+2B\\cos x"
"-Bx\\sin x-C\\cos x-D\\sin x"
"y_2'''(x)=-3A\\cos x+Ax\\sin x-3B\\sin x"
"-Bx\\cos x+C\\sin x-D\\cos x"
Substitute
"-Bx\\cos x+C\\sin x-D\\cos x"
"-6A\\sin x-3Ax\\cos x+6B\\cos x"
"-3Bx\\sin x-3C\\cos x-3D\\sin x"
"+3A\\cos x-3Ax\\sin x+3B\\sin x+3Bx\\cos x"
"-3C\\sin x+3D\\cos x"
"+Ax\\cos x+Bx\\sin x+C\\cos x+D\\sin x"
"=x\\cos x"
"x\\cos x: 2B-2A=1"
"x\\sin x: 2B+2A=0"
"\\cos x: 2D+6B-2C=0"
"\\sin x: -2C-6A-2D=0"
"A=-\\dfrac{1}{4}, B=\\dfrac{1}{4}, C=\\dfrac{3}{4}, D=0"
The partial solution of the nonhomogeneous differential equation
is
Find the partial solution of the nonhomogeneous differential equation
"y_3(x)=(Ax^2+Bx+C)e^{-x}(D\\cos x+E\\sin x)"
"y_3'(x)=(2Ax+B)e^{-x}(D\\cos x+E\\sin x)"
"-(Ax^2+Bx+C)e^{-x}(D\\cos x+E\\sin x)"
"+(Ax^2+Bx+C)e^{-x}(-D\\sin x+E\\cos x)"
"y_3''(x)=2Ae^{-x}(D\\cos x+E\\sin x)"
"-(4Ax+2B)e^{-x}(D\\cos x+E\\sin x)"
"+(4Ax+2B)e^{-x}(-D\\sin x+E\\cos x)"
"+2(Ax^2+Bx+C)e^{-x}(D\\sin x-E\\cos x)"
"y_3'''(x)=-6Ae^{-x}(D\\cos x+E\\sin x)"
"+6Ae^{-x}(-D\\sin x+E\\cos x)"
"+(12Ax+6B)e^{-x}(D\\sin x-E\\cos x)"
"-2(Ax^2+Bx+C)e^{-x}(D\\sin x-E\\cos x)"
"+2(Ax^2+Bx+C)e^{-x}(D\\cos x+E\\sin x)"
After substitution we have
The general solution of the nonhomogeneous differential equation is
"+x^2e^{-x}\\cos x-6xe^{-x}\\sin x-12e^{-x}\\cos x"
Comments
Leave a comment