x^3y''' + 2x^2y'' = x + sin(lnx)
"y''=v,y'''=v'"
"v'+2v\/x=(x+sin(lnx))\/x^3"
"\\mu(x)=e^{\\int 2\/x dx}=x^2"
multiply both sides by "\\mu(x)" :
"x^2v'+2xv=(x+sin(lnx))\/x"
"\\frac{d}{dx}(x^2v)=(x+sin(lnx))\/x"
"x^2v=\\int(x+sin(lnx))\/xdx"
"x^2v=x-cos(lnx)+c_1"
"v=y''=(x-cos(lnx)+c_1)\/x^2"
"y'=\\int(x-cos(lnx)+c_1)\/x^2dx"
"\\int \\frac{cos(lnx)}{x^2}dx=|u=lnx,dx=xdu|=\\int e^{-u}cosudu="
"=-e^{-u}cosu-\\intop e^{-u}cosudu=-e^{-u}cosu+-e^{-u}sinu-\\intop e^{-u}cosudu"
"\\intop e^{-u}cosudu=\\frac{cos(lnu)-sin(lnxu)}{2}=\\frac{cos(lnx)-sin(lnx)}{2x}"
"y'=\\frac{cos(lnx)-sin(lnx)}{2x}+lnx-c_1\/x+c_2"
"y=\\int (\\frac{cos(lnx)-sin(lnx)}{2x}+lnx-c_1\/x+c_2)dx"
"\\int \\frac{cos(lnx)-sin(lnx)}{x}dx=\\int (cos(lnx)-sin(lnx))d(lnx)=sin(lnx)+cos(lnx)"
"y=\\frac{cos(lnx)+sin(lnx)}{2}-x+xlnx-c_1lnx+c_2x+c_3"
Comments
Leave a comment