using D' Alembert method, find the deflection of a vibrating string of unit length having fixed ends, with initial velocity zero and initial deflection f(x)=asin2nx
1-D wave equation can be written as:
"\\dfrac{\\partial^{2} u}{\\partial t^{2}}=c^{2} \\dfrac{\\partial^{2} u}{\\partial x^{2}}"
Here "f(x)=a\\sin^2nx"
Using "D^{\\prime}" Alembert's method, the solution can be given as:
"y(x,t)=\\dfrac12[f(x+ct)+f(x-ct)]\n\\\\=\\dfrac12[a\\sin^2n(x+ct)+a\\sin^2n(x-ct)]\n\\\\=\\dfrac a2[\\sin^2(nx+nct)+\\sin^2(nx-nct)]"
"=\\dfrac a2[\\dfrac{1-\\cos 2(nx+nct)}{2}+\\dfrac{1-\\cos 2(nx-nct)}{2}]" [Using "\\sin^2t=\\dfrac{1-\\cos 2t}2" ]
"=\\dfrac a4[{2-\\cos 2(nx+nct)}-\\cos 2(nx-nct)]\n\\\\=\\dfrac a4[{2-2\\cos (\\dfrac{2(nx+nct)-2(nx-nct)}{2}}) \\cos (\\dfrac{2(nx+nct)+2(nx-nct)}{2})]"
"=\\dfrac a4[2-2\\cos (nct) \\cos (nx)]\n\\\\=\\dfrac a2[1-\\cos (nct) \\cos (nx)]"
Comments
Leave a comment