Using the method of undetermined coefficients, solve the equation:
d²y/dx² -3dy/dx +2y=4x²
"\\frac{d\u00b2y}{dx\u00b2} - 3 \\frac{dy}{dx} + 2y=4x\u00b2\\\\\n\n\n\\Big\\{\\frac{d\u00b2}{dx\u00b2} - 3 \\frac{d}{dx} + 2\\Big\\}y=4x\u00b2\\\\\n\n\\text{Let} \\, m = \\frac{d}{dx} \\\\\n\n\\text{Then, we have the auxiliary equation}\\\\\n\nm^2 - 3m + 2 = 0 \\\\\n\nm^2 - m - 2m + 2 = 0 \\\\\n\nm(m - 1) - 2(m - 1) = 0\\\\\n\n(m - 2)(m - 1) = 0\\\\\n\nm = 2,1 \\\\\n\n\\text{Hence, we have the complementary function}\\\\\n\nC.F = C_1 e^x + C_2 e^{2x} \\\\\n\\text{where} \\, C_1 \\text{and} \\, C_2 \\, \\text{are arbitrary constants} \\\\\n\n\\text{To find the particular integeral by}\\\\\n\\text{the method of undetermined coefficient}\\\\\n\n\\text{Let the particular integral be of the form}\\\\\n\ny_p = ax^2 + bx + c \\\\\n\n\\text{We want to find a, b, c such that}\\\\\ny''_p - 3y'_p + 2 y_p = 4x^2 . . . (*) \\\\\n\n\\text{From} \\, y_p = ax^2 + bx + c \\, \\text{.We have}\\\\\n\ny'p = 2ax + b \\\\\n\ny''p = 2a \\\\\n\n\\text{Now, substitute these values into eq(*)}\\\\\n\\text{ To have,}\\\\\n\n2a - 3(2ax + b) + 2(ax^2 + bx + c) = 4x^2 \\\\\n\n\\text{Comparing powers. We have}\\\\\n\n2ax^2 = 4x^2 \\, \\implies \\, 2a = 4 \\, \\implies a = 2\\\\\n\n(-6a + 2b)x = 0x \\, \\implies -12 + 2b = 0\\\\ \\implies b = 6\\\\\n\n2a - 3b + 2c = 0 \\, \\implies 4 - 18 + 2c = 0\\\\ \\implies 2c = 14 \\implies c = 7\\\\\n\n\\text{Hence, }\\\\\n\n\\text{P.I}\\, = y_p = ax^2 + bx + c = 2x^2 + 6x + 7\\\\\n\n\\text{Thus, the general solution is}\\\\\n\ny(x) = C.F + P.I \\\\\n\ny(x) = C_1 e^x + C_2 e^{2x} + 2x^2 + 6x + 7 \\\\\n\\text{where} \\, C_1 \\, \\text{and} \\, C_2 \\, \\text{are arbitrary constants}"
Comments
Leave a comment