Find a power series solution of xy'=y
"\\text{Let}\\ y=\\sum_{n=0}^{\\infty}a_nx^n, \\\\\n\\text{Then}, y\\prime=\\sum_{n=1}^{\\infty}na_nx^{n-1}, \\\\\n\\text{Therefore}, xy\\prime=y\\ \\Rightarrow x\\sum_{n=1}^{\\infty}na_nx^{n-1}=\\sum_{n=0}^{\\infty}a_nx^n\\\\\n\\Rightarrow \\sum_{n=1}^{\\infty}na_nx^n=\\sum_{n=0}^{\\infty}a_nx^n\\\\\n\\Rightarrow\\sum_{n=0}^{\\infty}a_nx^n-\\sum_{n=1}^{\\infty}na_nx^n=0\\\\\n\\Rightarrow a_0+\\sum_{n=1}^{\\infty}a_nx^n-\\sum_{n=1}^{\\infty}na_nx^n=0\\\\\n\\Rightarrow a_0+\\sum_{n=1}^{\\infty}a_n(1-n)x^n=0\\\\\n\\Rightarrow \\sum_{n=0}^{\\infty}a_n(1-n)x^n=0\\\\\n\\Rightarrow \\sum_{n=0}^{\\infty}a_n(1-n)x^n=\\sum_{n=0}^{\\infty}(0 \\times x^n)\\\\\n\\Rightarrow a_n(1-n)=0, \\text{for}\\ n\\in\\N\\\\\n\\Rightarrow a_n=\\frac{0}{(1-n)}=0, \\text{if}\\ n\\neq1\\\\\n\\Rightarrow a_1\\in\\R\\\\\n\\text{Hence, }y=\\sum_{n=0}^{\\infty}a_nx^n=a_0+a_1x+a_2x^2+\\cdots=a_1x\\\\\n\\text{Therefore, the series solution to the given equation is:}\\\\\ny=a_1x, \\text{where } a_1\\in \\R."
Comments
Leave a comment