(D^ 2 -40D' +4D'^2)2=e^ (2x+y)
The actual question is;
"\\displaystyle\n(D^2-4DD^\\prime+4(D^\\prime)^2)z=e^{2x+y}, \\text{where }D=\\frac{\\partial}{\\partial x}, \\text{and}\\ D^\\prime =\\frac{\\partial}{\\partial y}"
To find the complementary function (C.F), let "\\displaystyle\nD=m, \\text{and }D^\\prime=1," then the auxiliary equation of the given PDE in terms of variable m is;
"\\displaystyle\nm^2-4m+4=0"
"\\displaystyle\n\\Rightarrow (m-2)(m-2)=0\\Rightarrow m=2(\\text{twice})"
Thus the complementary function of the given PDE is;
"\\displaystyle\n\\color{green}{C.F=z_c=f_1(y+2x)+xf_2(y+2x)}"
Next, to find the particular integral (P.I) of the given PDE, we proceed as follows;
"\\displaystyle\nP.I=\\frac{1}{(D^2-4DD^\\prime+4(D^\\prime)^2)}e^{2x+y}=x\\frac{1}{(2D-4D^\\prime)}e^{2x+y}=\\frac{x^2}{2}e^{2x+y}."
Thus the particular integral of the given PDE is;
"\\displaystyle\n\\color{blue}{P.I=z_p=\\frac{x^2}{2}e^{2x+y}}"
Since complete solution (z) is "\\displaystyle\n\\color{red}{z=z_c+z_p}", thus we have the complete solution as;
"\\displaystyle\n\\color{red}{z=f_1(y+2x)+xf_2(y+2x)+\\frac{x^2}{2}e^{2x+y}}"
Comments
Leave a comment