Solve the initial value problem
y"-3y'-10y=0, y'(0)=1, y'(0)=2
"y"-3y'-10y=0, y(0)=1, y'(0)=2"
Auxiliary equation is
"k^2-3k-10=0"
"k=\\frac{3\\pm \\sqrt{9+40}}{2}"
"k_1=-2,k_2=5"
General solution is
"y=c_1e^{-2x}+c_2e^{5x}...(1)"
Since, "y(0)=1"
"1=c_1+c_2...(2)"
And
"y'=-2c_1e^{-2x}+5c_2e^{5x}"
Also "y'(0)=2"
"2=-2c_1+5c_2...(3)"
Multiply equation (2) with 2 and add with equation (3), we get
"4=7c_2\\Rightarrow c_2=\\frac{4}{7}"
From equation (2),
"1=c_1+\\frac 4 7\\Rightarrow c_1=\\frac 3 7"
"y=\\frac 3 7e^{-2x}+\\frac 4 7e^{5x}\\Rightarrow 7y=3e^{-2x}+4e^{5x}"
Comments
Leave a comment