Solve the equation of x²p²+xp-(y²+y)=0
"\\displaystyle\nx\u00b2p\u00b2+xp-(y\u00b2+y)=0\\\\\\Rightarrow p=\\frac{-x\\pm\\sqrt{x^2-4x^2(-(y^2+y))}}{2x^2}=\\frac{-x\\pm\\sqrt{x^2-4x^2(-y^2-y)}}{2x^2}"
"\\displaystyle\n=\\frac{-x\\pm\\sqrt{x^2+4x^2(y^2+y)}}{2x^2}=\\frac{-x\\pm\\sqrt{x^2(1+4(y^2+y))}}{2x^2}"
"\\displaystyle\n=\\frac{-x\\pm x\\sqrt{(1+4(y^2+y))}}{2x^2}=\\frac{-x\\pm x\\sqrt{4y^2+4y+1}}{2x^2}"
"\\displaystyle\n=\\frac{-1\\pm \\sqrt{4y^2+4y+1}}{2x}", using quadratic formula.
"\\displaystyle\n\\Rightarrow p=\\frac{\\partial z}{\\partial x}=\\frac{-1\\pm \\sqrt{4y^2+4y+1}}{2x}=\\frac{-1\\pm \\sqrt{4y^2+4y+1}}{2x}=\\frac{-1\\pm\\sqrt{(2y+1)^2}}{2x}"
"\\displaystyle\n\\Rightarrow \\frac{\\partial z}{\\partial x}=\\frac{-1\\pm(2y+1)}{2x}=\n\\begin{cases}\n\\frac{y}{x}& \\text{if }\\frac{\\partial z}{\\partial x}=\\frac{-1+(2y+1)}{2x}\\\\\n\\quad\\\\\n\\frac{-1-y}{x}& \\text{if }\\frac{\\partial z}{\\partial x}=\\frac{-1-(2y+1)}{2x}\n\\end{cases}"
"\\displaystyle\n\\Rightarrow z=\n\\begin{cases}\n\\int\\frac{y}{x}\\ dx=y\\int\\frac{1}{x}\\ dx=y\\ln x+f(y)\\\\\n\\quad\\\\\n\\int\\frac{-(1+y)}{x}\\ dx=-(1+y)\\int\\frac{1}{x}\\ dx=-(1+y)\\ln x+ f(y)\n\\end{cases}"
where "f(y)" is an arbitrary function of "y".
Thus, "\\displaystyle\nz=y\\ln x+f(y) \\text{ or }z=-(1+y)\\ln x+f(y)"
Comments
Leave a comment