dy/dx = 5y + (e ^−2x)(y^−2)
"\\begin{aligned}\n\n&\\frac{d y}{d x}-5 y=e^{-2 x} y^{-2} \\\\\n\n&\\Longrightarrow y^{2} \\frac{d y}{d x}-5 y^{3}=e^{-2 x} \\\\\n\n&\\Longrightarrow 3 y^{2} \\frac{d y}{d x}-15 y^{3}=3 e^{-2 x} \\\\\n\n&\\text { Let, } \\mathrm{z}=\\mathrm{y}^{\\wedge} 3 \\\\\n\n&\\frac{d z}{d x}=3 y^{2} \\\\\n\n&\\Longrightarrow \\frac{d z}{d x}-15 z=3 e^{-2 x} \\ldots(i)\n\n\\end{aligned}"
Now this differential equation is of the form
"\\frac{d y}{d x}+P(x) y=Q(x)"
here, "P(x)=-15"
"Q(x)=3 e^{-2 x}"
So,
"\\text { Integrating Factor }=e^{\\int P(x) d x}=e^{\\int-15 d x}=e^{-15 x}"
Multiplying Integrating factor to the both sides of equation (i),
"e^{-15 x} \\frac{d z}{d x}-15 e^{-15 x} z=3 e^{-17 x}"
"\\begin{aligned}\n\n&\\Longrightarrow \\frac{d\\left(e^{-15 x} z\\right)}{d x}=3 e^{-17 x} \\\\\n\n&\\Longrightarrow d\\left(e^{-15 x} z\\right)=3 e^{-17 x} d x\n\n\\end{aligned}"
Integrating both sides,
"\\begin{aligned}\n\n&\\Longrightarrow \\int d\\left(e^{-15 x} z\\right)=\\int 3 e^{-17 x} d x \\\\\n\n&\\Longrightarrow e^{-15 x} z=-\\frac{3}{17} e^{-17 x}+C \\\\\n\n&\\Longrightarrow y^{3} e^{-15 x}=-\\frac{3}{17} e^{-17 x}+C \n\n\\end{aligned}"
Comments
Leave a comment