(d^2-5d+6)y =x cos(2x)
For complementary solution:
"D^2-5D+6=0\n\\\\\\Rightarrow D^2-3D-2D+6=0\n\\\\\\Rightarrow (D-3)(D-2)=0\n\\\\\\Rightarrow D=3,D=2"
So, "y_c=c_1e^{2x}+c_2e^{3x}"
Next, we determine particular solution by method of undetermined coefficients.
The particular solution to "\\frac{d^{2} y(x)}{d x^{2}}-5 \\frac{d y(x)}{d x}+6 y(x)=x \\cos (2 x)" is of the form: "y_{p}(x)=a_{1} \\cos (2 x)+a_{2} x \\cos (2 x)+a_{3} \\sin (2 x)+a_{4} x \\sin (2 x)"
Solve for the unknown constants "a_{1}, a_{2}, a_{3} ,\\ and\\ a_{4}" :
Compute "\\frac{d y_{p}(x)}{d x} :\n\n \\frac{d y_{p}(x)}{d x}=\\frac{d}{d x}\\left(a_{1} \\cos (2 x)+a_{2} x \\cos (2 x)+a_{3} \\sin (2 x)+a_{4} x \\sin (2 x)\\right)"
"\\begin{aligned}\n\n=&-2 a_{1} \\sin (2 x)+a_{2} \\cos (2 x)-\\\\\n\n& 2 a_{2} x \\sin (2 x)+2 a_{3} \\cos (2 x)+2 a_{4} x \\cos (2 x)+a_{4} \\sin (2 x)\n\n\\end{aligned}"
Compute "\\frac{d^{2} y_{p}(x)}{d x^{2}} :"
"\\begin{aligned}\n\n\\frac{d^{2} y_{p}(x)}{d x^{2}}=& \\frac{d^{2}}{d x^{2}}\\left(a_{1} \\cos (2 x)+a_{2} x \\cos (2 x)+a_{3} \\sin (2 x)+a_{4} x \\sin (2 x)\\right) \\\\\n\n=&-4 a_{1} \\cos (2 x)-4 a_{2} x \\cos (2 x)-\\\\\n\n& 4 a_{2} \\sin (2 x)-4 a_{3} \\sin (2 x)+4 a_{4} \\cos (2 x)-4 a_{4} x \\sin (2 x)\n\n\\end{aligned}"
Substitute the particular solution "y_{p}(x)" into the differential equation:
"\\begin{aligned}\n\n&\\frac{d^{2} y_{p}(x)}{d x^{2}}-5 \\frac{d y_{p}(x)}{d x}+6 y_{p}(x)=x \\cos (2 x) \\\\\n\n&-4 a_{1} \\cos (2 x)-4 a_{2} x \\cos (2 x)-4 a_{2} \\sin (2 x)-4 a_{3} \\sin (2 x)+ \\\\\n\n&4 a_{4} \\cos (2 x)-4 a_{4} x \\sin (2 x)-5\\left(-2 a_{1} \\sin (2 x)+a_{2} \\cos (2 x)-\\right. \\\\\n\n&\\left.2 a_{2} x \\sin (2 x)+2 a_{3} \\cos (2 x)+2 a_{4} x \\cos (2 x)+a_{4} \\sin (2 x)\\right)+ \\\\\n\n&6\\left(a_{1} \\cos (2 x)+a_{2} x \\cos (2 x)+a_{3} \\sin (2 x)+a_{4} x \\sin (2 x)\\right)=x \\cos (2 x)\n\n\\end{aligned}"
Simplify:
"\\begin{aligned}\n\n&\\left(2 a_{1}-5 a_{2}-10 a_{3}+4 a_{4}\\right) \\cos (2 x)+\\left(2 a_{2}-10 a_{4}\\right) x \\cos (2 x)+ \\\\\n\n&\\quad\\left(10 a_{1}-4 a_{2}+2 a_{3}-5 a_{4}\\right) \\sin (2 x)+\\left(10 a_{2}+2 a_{4}\\right) x \\sin (2 x)=x \\cos (2 x)\n\n\\end{aligned}"
Equate the coefficients of "\\cos (2 x)" on both sides of the equation:
"2 a_{1}-5 a_{2}-10 a_{3}+4 a_{4}=0"
Equate the coefficients of "x \\cos (2 x)" on both sides of the equation:
"2 a_{2}-10 a_{4}=1"
Equate the coefficients of "\\sin (2 x)" on both sides of the equation:
"10 a_{1}-4 a_{2}+2 a_{3}-5 a_{4}=0"
Equate the coefficients of "x \\sin (2 x)" on both sides of the equation:
"10 a_{2}+2 a_{4}=0"
Solve the system:
"\\begin{aligned}\n\n&a_{1}=-\\frac{5}{169} \\\\\n\n&a_{2}=\\frac{1}{52} \\\\\n\n&a_{3}=-\\frac{73}{1352} \\\\\n\n&a_{4}=-\\frac{5}{52}\n\n\\end{aligned}"
Substitute"a_{1}, a_{2}, a_{3} ,\\ and\\ a_{4}\\ into\\ y_{p}(x)=\\cos (2 x) a_{1}+x \\cos (2 x) a_{2}+\\sin (2 x) a_{3}+ x \\sin (2 x) a_{4}" :
"y_{p}(x)=-\\frac{5}{169} \\cos (2 x)+\\frac{1}{52} x \\cos (2 x)-\\frac{73 \\sin (2 x)}{1352}-\\frac{5}{52} x \\sin (2 x)"
The general solution is:
Answer:
"\\begin{aligned}\n\n&y(x)=y_{\\mathrm{c}}(x)+y_{p}(x)=-\\frac{5}{169} \\cos (2 x)+ \\\\\n\n&\\frac{1}{52} x \\cos (2 x)-\\frac{73 \\sin (2 x)}{1352}-\\frac{5}{52} x \\sin (2 x)+c_{1} e^{2 x}+c_{2} e^{3 x}\n\n\\end{aligned}"
Comments
Leave a comment