Use variation of parameter methods to find the particular solution of xy−(x+1)y+y = x2, given that y1(x) = ex and y2(x) = x + 1 form a fundamental set of solutions for the corresponding homogeneous differential equation.
"y=c_1e^x+c_2(x+1)"
"y'=c_1e^x+c_1'e^x+c_2+c_2'(x+1)"
Let "c_1'e^x+c_2'(x+1)=0." Then
"y''=c_1e^x+c_1'e^x+c_2'"
Substitute
"+c_1e^x+c_2(x+1)=x^2"
"c_1'xe^x+c_2'x=x^2"
We have
"c_1'xe^x+c_2'x=x^2"
"-c_2'x(x+1)+c_2'x=x^2"
"c_2'=-1"
"c_1'=e^{-x}(x+1)"
Then we can take
"c_2=-x"
The particular solution is
"y_p=-x^2-2x-2"
Comments
Leave a comment