Find the particular solution of:
1.) x^2 y' -2xy=x^4 +3; where y = 2 and x = 1
"y'-\\dfrac{2}{x}=x^2+\\dfrac{3}{x^2}"
"I.F.=e^{\\int(-2\/x)dx}=\\dfrac{1}{x^2}"
"\\dfrac{1}{x^2}(y'-\\dfrac{2}{x})=\\dfrac{1}{x^2}(x^2+\\dfrac{3}{x^2})"
Integrate
"\\dfrac{y}{x^2}=x-\\dfrac{1}{x^3}+C"
"y=x^3-\\dfrac{1}{x}+Cx^2"
"y = 2,x = 1"
"C=2"
The particular solution is
Comments
Leave a comment