Find a solution to dy/dx=xy+9x+4y+36
If necessary, use K to denote an arbitrary constant.
The given equation can be written as, "\\dfrac{dy}{dx} = (x+4)(y+9)"
Separating the variables, "\\dfrac{dy}{y+9} = (x+4)dx"
Integrating we get,
"\\begin{aligned}\n\\log (y+9) &= \\dfrac{x^{2}}{2}+4x + c\\\\\ny+9 &= e^{\\frac{1}{2}(x^2+8x+2c)}\\\\\ny&= Ke^{\\frac{1}{2}(x^2+8x)} -9,~~~\\text{where } K = e^{c}\n\\end{aligned}"
Comments
Leave a comment