Solve the following system of equations by using the concept of matrices and determinants. ππ + ππ + π = π ππ + ππ + π = π (b) Find whether the following series are convergent or divergent β π π + β π π + β π π + β―
The first item:
"\\begin{cases}\n 5x + 7y + 2 = 0 \\\\\n 4x + 6y + 3 = 0\n \\end{cases}"
"x = \\frac{\\begin{vmatrix}\n -2 & 7\\\\\n -3 & 6\n \\end{vmatrix}}\n {\\begin{vmatrix}\n 5 & 7\\\\\n 4 & 6\n \\end{vmatrix}} = \\frac{-12 + 21}{30 - 28} = \\frac{9}2 = 4.5"
"y = \\frac{\\begin{vmatrix}\n 5 & -2\\\\\n 4 & -3\n \\end{vmatrix}}\n {\\begin{vmatrix}\n 5 & 7\\\\\n 4 & 6\n \\end{vmatrix}} = \\frac{-15 + 8}{30 - 28} = \\frac{-7}2 = -3.5"
The second item:
"\\frac{\\sqrt{1}}{4} + \\frac{\\sqrt{2}}{6} + \\frac{\\sqrt{3}}{8} + \\dots = \\sum_{k=1}^{\\infty} \\frac{\\sqrt{k}}{2k + 2} = \\sum_{k=1}^{\\infty} \\frac{1}{2\\sqrt{k} + \\frac{2}{\\sqrt{k}}} \\ge \\sum_{k=1}^{\\infty} \\frac{1}{4\\sqrt{k}}"
The last sum series is divergent, so the initial one is divergent too.
Comments
Leave a comment