(D^2+4D+3)y=2cos^2x
The general solution takes the form
y=yc+yp
To solve for yc;
An auxiliary equation can be given as:
"m^2+4m+3=0"
D=16-12=4
"m_1=\\frac{-4+2}{2}=-1"
"m_2=\\frac{-4-2}{2}=-3"
"y_c=C_1e^{-x}+C_2e^{-3x}"
2cos2x=cos(2x)+1
"y_p=x^se^{ax}(R_m(x)cos(bx)+T_m(x)sin(bx)("
s=0 if a+bi is not a root or s=k if it is.
Sollutiong for 1:
a+bi=0, then s=0
y0=A
y'0=0
y''0=0
3A=1
A=1/3
y0=1/3
Sollution fot cos(2x)
a+bi=2i, then s=0
y1=Bsin(2x)+Acos(2x)
y'1=2Bcos(2x)-2Asin(2x)
y''1=-4Bsin(2x)-4Acos(2x)
(-B-8A)sin(2x)+(8B-A)cos(2x)=cos(2x)
A=-1/65
B=8/65
"y_1=\\frac{8sin(2x)}{65}-\\frac{cos(2x)}{65}"
"y=C_1e^{-x}+C_2e^{-3x}+ \\frac{8sin(2x)}{65}-\\frac{cos(2x)}{65}+1\/3"
Comments
Leave a comment