Find the general solution of the equation:
π₯^2π¦" β 7π₯π¦β² + 12π¦ = 0
"x^2y''-7xy'+12y=0\\\\y=x^pz:\\\\y'=px^{p-1}z+x^pz'\\\\y''=p\\left( p-1 \\right) x^{p-2}z+2px^{p-1}z'+x^pz''\\\\p\\left( p-1 \\right) x^pz+2px^{p+1}z'+x^{p+2}z''-7px^pz-7x^{p+1}z'+12x^pz=0\\\\x^{p+2}z''+\\left( 2p-7 \\right) x^{p+1}z'+\\left( p^2-8p+12 \\right) x^pz=0\\\\p^2-8p+12=0\\Rightarrow p\\in \\left\\{ 2,6 \\right\\} \\\\p=2:\\\\xz''-3z'=0\\Rightarrow z'=Cx^3\\Rightarrow z=C_1+C_2x^4\\Rightarrow y=C_1x^2+C_2x^6"
Comments
Leave a comment