Solve the standard type of first order partial differential equation
p(1+q) = qz
p(1+q) =qz
This is of form F(z, p, q) =0
let z= f(x + ay) be the solution
put u =x + ay
p = ∂z/∂x = dz/du
q =∂z/∂y = adz/du
dz/du(1 + a dz/du) = az dz/du
1+ adz/du = az
integrating both sides
"\\int" adz/ (az-1) ="\\int" du
log(az-1) = u + c
log(az-1) = x + ay +c
Comments
Leave a comment