Find the general solution of the given differential equation.
(x + 1) dy/dx + (x + 2)y = 2xe^−x
"\\left( x+1 \\right) y'+\\left( x+2 \\right) y=2xe^{-x}\\\\Homogeneous\\,\\,equation:\\\\\\left( x+1 \\right) y'+\\left( x+2 \\right) y=0\\\\\\frac{dy}{y}=-\\frac{x+2}{x+1}dx\\\\\\ln \\left| y \\right|=-x-\\ln \\left| x+1 \\right|+C'\\\\y=C\\frac{e^{-x}}{x+1}\\\\y=C\\left( x \\right) \\frac{e^{-x}}{x+1}\\\\y'=C'\\left( x \\right) \\frac{e^{-x}}{x+1}+C\\left( x \\right) \\left( \\frac{e^{-x}}{x+1} \\right) '\\\\\\left( x+1 \\right) C'\\left( x \\right) \\frac{e^{-x}}{x+1}=2xe^{-x}\\\\C'\\left( x \\right) =2x\\\\C\\left( x \\right) =x^2+C\\\\y=\\left( x^2+C \\right) \\frac{e^{-x}}{x+1}"
Comments
Leave a comment