Show that simple harmonic motion y(t) = C1 cos ωt + C2 sin ωt can be written as:
a. y(t) = A sin(ωt + ϕ0)
b. y(t) = A cos(ωt + ϕ1)
At first, rewrite the function in the following way: "y(t)=\\sqrt{C_1^2+C_2^2}(\\frac{C_1}{\\sqrt{C_1^2+C_2^2}}\\cos\\.wt+\\frac{C_2}{\\sqrt{C_1^2+C_2^2}}\\sin\\.wt)". Point out that "-1\\leq\\frac{C_1}{\\sqrt{C_1^2+C_2^2}}\\leq1" and "\\left(\\frac{C_1}{\\sqrt{C_1^2+C_2^2}}\\right)^2+\\left(\\frac{C_2}{\\sqrt{C_1^2+C_2^2}}\\right)^2=1" Therefore, there is such "\\phi_0" that "\\frac{C_1}{\\sqrt{C_1^2+C_2^2}}=\\cos\\phi_0" and "\\frac{C_2}{\\sqrt{C_1^2+C_2^2}}=\\sin\\phi_0". It can be obtained from the properties of functions "\\arccos", "\\arcsin". We receive: "y(t)=(\\cos\\phi_0\\,\\cos\\.wt+\\sin\\phi_0\\sin\\.wt)=\\cos(wt-\\phi_0)". Thus, we get: "y(t)=A\\,\\cos\\.(wt-\\phi_0)", where "A=\\sqrt{C_1^2+C_2^2}" . After the change: "\\phi_0\\rightarrow-\\phi_1" we receive formula b). After the change "w\\rightarrow-w", "\\phi_0\\rightarrow\\phi_0-\\frac{\\pi}2" in formula "y(t)=A\\,\\cos\\.(wt-\\phi_0)" we receive: "y(t)=A\\,\\cos\\.(\\frac{\\pi}2-wt-\\phi_0)=A\\sin(wt+\\phi_0)". It is formula a). .
Comments
Leave a comment