Solve the following differential equation: 2dy/dx + y = y^3(x - 1)
"y'+y\/2=(xy^3)\/2-y^3\/2"
Bernuli equalation
"y'+a(x)y=b(x)y^n"
a(x)=1/2
b(x)=(x-1)/2
n=3
"y'\/y^3+1\/(2y^2)=x\/2-1\/2"
Deleting, we miss solution y=0
"u=1\/y^2"
"u'=-2y'\/y^3"
"y=1\/\\sqrt u"
"y'=-u'y^3\/2"
"u\/2-u'\/2=x\/2-1\/2"
u-u'=x-1
-u'=x-u-1
v=x-u-1
v'=1-u'
u=x-v-1
u'=1-v'
v'-1=v
v'=v+1=dv/dx
dv=(v+1)dx
dv/(v+1)=dx
Deleting, we miss solution v+1=0, x=1/y2
"\\int dv\/(v+1)=\\int dx"
ln (v+1)=x+C
v+1=ex+C
x-u=Cex
x-1/y2=Cex
"y=\\sqrt {\\frac{1}{x-Ce^x}}"
Comments
Leave a comment