Solve x2 dy/dx = y2 - xy. given that y = 1 when x = 1
Solution
Dividing by x2 we’ll get equation dy/dx = y2 / x2 – y/x
Substitution z=y/x, y=z*x => dy/dx = x(dz/dx) + z
From given equation x(dz/dx) = z2 – 2z => "\\frac{dz}{z^2-2z}=\\frac{dx}{x}" => "\\int\\frac{dz}{z^2-2z}=\\int\\frac{dx}{x}" => "\\frac{1}{2}\\int\\left(\\frac{1}{z-2}-\\frac{1}{z}\\right)dz=\\int\\frac{dx}{x}" => ln|z–2| – ln|z| = 2ln|x| + C
If y = 1 when x = 1 then z = 1 when x = 1. Substitution this into last equality gives 0 – 0 = 2*0 + C => C = 0.
So solution of the given equation is
ln|z–2| – ln|z| = 2ln|x| => ln(|z–2| / |z|) = 2ln|x| => |(y-2x)/y| = x2 , 2x – y = y x2 => y(1 + x2) = 2x => y(x) = 2x/(1 + x2)
Answer
y(x) = 2x/(1 + x2)
Comments
Leave a comment