Find the Laplace transforms of the following function:
8. L{t^2 e^-2t + e^-t cos2t + 3}
"=\\displaystyle\\int_{0}^{\\infin}e^{-st}(t^2e^{-2t}+e^{-t}\\cos(2t)+3)dt"
"\\int t^2e^{-(s+2)t}dt=-\\dfrac{t^2e^{-(s+2)t}}{s+2}+\\dfrac{2}{s+2}\\int te^{-(s+2)t}dt"
"=-\\dfrac{t^2e^{-(s+2)t}}{s+2}-\\dfrac{2te^{-(s+2)t}}{(s+2)^2}"
"=-\\dfrac{t^2e^{-(s+2)t}}{s+2}-\\dfrac{2te^{-(s+2)t}}{(s+2)^2}-\\dfrac{2e^{-(s+2)t}}{(s+2)^3}+C"
"=[-\\dfrac{t^2e^{-(s+2)t}}{s+2}-\\dfrac{2te^{-(s+2)t}}{(s+2)^2}-\\dfrac{2e^{-(s+2)t}}{(s+2)^3}]\\begin{matrix}\n A \\\\\n 0\n\\end{matrix}"
"=-0-0-0-(-0-0-\\dfrac{2}{(s+2)^3})=\\dfrac{2}{(s+2)^3}"
"\\int e^{-(s+1)t}\\cos(2t)dt=-\\dfrac{e^{-(s+1)t}\\cos(2t)}{s+1}"
"-\\dfrac{2}{s+1}\\int e^{-(s+1)t}\\sin (2t)dt=-\\dfrac{e^{-(s+1)t}\\cos(2t)}{s+1}"
"+\\dfrac{2e^{-(s+1)t}\\sin(2t)}{(s+1)^2}-\\dfrac{4}{(s+1)^2}\\int e^{-(s+1)t}\\cos (2t)dt"
"((s+1)^2+4)\\int e^{-(s+1)t}\\cos (2t)dt"
"=-e^{-(s+1)t}\\cos(2t)(s+1)+2e^{-(s+1)t}\\sin(2t)"
"\\int e^{-(s+1)t}\\cos (2t)dt=-\\dfrac{e^{-(s+1)t}\\cos(2t)(s+1)}{s^2+2s+5}"
"+\\dfrac{2e^{-(s+1)t}\\sin(2t)}{s^2+s+5}+C_1"
"=[-\\dfrac{e^{-(s+1)t}\\cos(2t)(s+1)}{s^2+2s+5}+\\dfrac{2e^{-(s+1)t}\\sin(2t)}{s^2+s+5}]\\begin{matrix}\n A \\\\\n 0\n\\end{matrix}"
"=-0+0-(-\\dfrac{s+1}{s^2+2s+5}+0)=\\dfrac{s+1}{s^2+2s+5}"
"=[-\\dfrac{3e^{-st}}{s}+]\\begin{matrix}\n A \\\\\n 0\n\\end{matrix}=-0+\\dfrac{3}{s}=\\dfrac{3}{s}"
"=\\dfrac{2}{(s+2)^3}+\\dfrac{s+1}{s^2+2s+5}+\\dfrac{3}{s}"
Comments
Leave a comment