(x^3+y^3)=(3xy^2)dy/dx
A Bernoulli differential equation
Substitute
"z=y^{1-(-2)}=y^3""\\dfrac{dz}{dx}=3y^2\\dfrac{dy}{dx}"
"\\dfrac{dy}{dx}=\\dfrac{1}{3y^2}\\dfrac{dz}{dx}"
Then
"IF=e^{\\int (-1\/x)dx}=\\dfrac{1}{x}"
"\\dfrac{1}{x}\\dfrac{dz}{dx}-\\dfrac{1}{x^2}z=x"
"\\dfrac{z}{x}=\\dfrac{x^2}{2}+C"
"z=\\dfrac{x^3}{2}+Cx"
"y^3=\\dfrac{x^3}{2}+Cx"
Comments
Leave a comment