Find the general solution for the differential equation
-y"=6x + xe^x
(a) using method of undetermined coefficients
(b) using variation of parameters
(a) method of undetermined coefficients
"y\\prime\\prime=6x+xe^x"
"y=y_u+y_{p1}+y_{p2}" ,
"y_u\\prime\\prime=0\\ \\Longrightarrow\\ \\lambda_{1,2}=0\\ \\Longrightarrow\\ y_u=C_1x+C_2" ,
"y_{p1}\\prime\\prime=6x;\\ \\Longrightarrow y_{p1}\\prime=\\int6xdx=3x^2;\\ \\Longrightarrow y_{p1}=\\int{3x^2dx}=x^3" ,
"y_{p2}\\prime\\prime=xe^x" ,
"y_{p2}\\left(x\\right)=\\left(Ax+B\\right)e^x" ,
"y_{p2}\\prime\\left(x\\right)=Ae^x+\\ \\left(Ax+B\\right)e^x=\\left(A+Ax+B\\right)e^x" ,
"y_{p2}\\prime\\prime\\left(x\\right)=Ae^x+\\left(A+Ax+B\\right)e^x=e^x\\left(2A+B+Ax\\right)=xe^x",
"A=1; 2A+B=0"
"A=1; B=-2"
"y_{p2}\\left(x\\right)=\\left(Ax+B\\right)e^x=\\left(x-2\\right)e^x" ,
Answer: "y=C_1x+C_2+x^3+\\left(x-2\\right)e^x" .
(b) method of variation of parameters
"y\\prime\\prime=6x+xe^x=f\\left(x\\right)" ,
"y=y_u+y_p" ,
"y_u\\prime\\prime=0\\ \\Longrightarrow\\ \\lambda_{1,2}=0\\ \\Longrightarrow\\ y_u=C_1x+C_2" ,
make up a system of equations:
"\\left\\{\\begin{matrix}C_1\\prime y_1+C_2\\prime y_2=0\\\\C_1\\prime y_1\\prime+C_2\\prime y_2\\prime=f\\left(x\\right)\\\\\\end{matrix}\\right." ,
"\\left\\{\\begin{matrix}C_1\\prime x+C_2\\prime=0\\\\C_1\\prime+C_2\\prime0=6x+xe^x\\\\\\end{matrix}\\right." ,
"\\left\\{\\begin{matrix}xC_1\\prime +C_2\\prime=0\\\\C_1\\prime=6x+xe^x\\\\\\end{matrix}\\right." ,
"C_1\\left(x\\right)=\\int\\left(6x+xe^x\\right)dx=3x^2+e^x\\left(x-1\\right)+C_1" ,
"C_2=-\\int\\left(6x+xe^x\\right)xdx=-\\int\\left(6x^2+x^2e^x\\right)dx=-2x^3-e^x\\left(x^2-2x+2\\right)+C_2" ,
"y=C_1\\left(x\\right)x+C_2\\left(x\\right)=\\left(3x^2+e^x\\left(x-1\\right)+C_1\\right)x-2x^3-e^x\\left(x^2-2x+2\\right)+C_2=x^3+\\left(x-2\\right)e^x+C_1x+C_2"
Answer: "y=x^3+\\left(x-2\\right)e^x+C_1x+C_2" .
NB: "\\int{xe^xdx}=\\binom{u=x}{dx=du}\\binom{dv=e^xdx}{v=e^x}=xe^x-\\int{e^xdx}=e^x\\left(x-1\\right)+C" ,
"\\int{x^2e^xdx}=\\binom{u=x^2}{2xdx=du}\\binom{dv=e^xdx}{v=e^x}=x^2e^x-2\\int{xe^xdx}=x^2e^x-2e^x\\left(x-1\\right)+C=e^x\\left(x^2-2x+2\\right)+C."
Comments
Leave a comment