dy/dx-y= e^x y^2
Use the change of variable
"z=y^{1-2}=y^{-1}""z=y^{-1}"
Differentiate both sides with respect to "x"
Then
Substitute
We get the linear equation for the function "z(x)." To solve it, we use the integrating factor:
"e^xz'+e^xz=-e^{2x}"
"d(ze^x)=-e^{2x}dx"
Integrate
"ze^x=-\\dfrac{1}{2}e^{2x}+\\dfrac{1}{2}C"
"z=-\\dfrac{1}{2}e^x+\\dfrac{1}{2}Ce^{-x}"
Then
"y=\\dfrac{2}{-e^x+Ce^{-x}}, or\\ y=0"
Comments
Leave a comment