Find the eigenvalues and eigenvectors of the matrices A =
"
1 2
−8 4#
and B =
"
a b
−b a#
.
Solution.
1.
Solve equation for finding eigenvalues:
"|A-\\lambda I|=0"
From here we have eigenvalues"\\lambda_1=\\frac{5-\\sqrt{55}i}{2}, \\lambda_2=\\frac{5+\\sqrt{55}i}{2}."
Solve equation for finding the first eigenvector
"(A-\\lambda_1 I)v_1=0."
Hence
then "x_2=x_2, x_1=\\frac{3+\\sqrt{55}i}{16}."
So, "v_1=\\begin{pmatrix}\n \\frac{3+\\sqrt{55}i}{16} \\\\\n 1\n\\end{pmatrix}."
Solve equation for finding the second eigenvector
"(A-\\lambda_2 I)v_2=0."
Hence
then "x_2=x_2, x_1=\\frac{3-\\sqrt{55}i}{16}."
So, "v_2=\\begin{pmatrix}\n \\frac{3-\\sqrt{55}i}{16} \\\\\n 1\n\\end{pmatrix}."
2.
Solve equation for finding eigenvalues:
"|B-\\lambda I|=0"
From here we have eigenvalues"\\lambda_1=\\sqrt{a^2+b^2}, \\lambda_2=-\\sqrt{a^2+b^2}."
Solve equation for finding the first eigenvector
"(B-\\lambda_1 I)v_1=0."
Hence
"\\begin{pmatrix}\n a- \\sqrt{a^2+b^2}& b\\\\\n -b & a-\\sqrt{a^2+b^2}\n\\end{pmatrix}\\to\n\\begin{pmatrix}\n b & -a-\\sqrt{a^2+b^2}\\\\\n 0& 2b\\sqrt{a^2+b^2}\n\\end{pmatrix}" then "x_2=2b\\sqrt{a^2+b^2},\nx_1=2a\\sqrt{a^2+b^2}+2(a^2+b^2)."
So, "v_1=\\begin{pmatrix}\n 2a\\sqrt{a^2+b^2}+2(a^2+b^2)\\\\\n 2b\\sqrt{a^2+b^2}\n\\end{pmatrix}."
Solve equation for finding the second eigenvector
"(B-\\lambda_2 I)v_2=0."
Hence
"\\begin{pmatrix}\n a+\\sqrt{a^2+b^2}& b\\\\\n -b & a+\\sqrt{a^2+b^2}\n\\end{pmatrix}\\to\n\\begin{pmatrix}\n -b & a+\\sqrt{a^2+b^2}\\\\\n 0& -2b\\sqrt{a^2+b^2}\n\\end{pmatrix}" then "x_2=-2b\\sqrt{a^2+b^2},\nx_1=2a\\sqrt{a^2+b^2}-2(a^2+b^2)."
So, "v_2=\\begin{pmatrix}\n 2a\\sqrt{a^2+b^2}-2(a^2+b^2)\\\\\n -2b\\sqrt{a^2+b^2}\n\\end{pmatrix}."
Comments
Leave a comment