Let X and Y be normed spaces, T∈B(X,Y) and (xn) a sequence in X. If xn→x0, show that Txn→Tx0.
ANSWER
Since "B(X,Y)" is a space of linear bounded operators in which norma can be given "\\left\\| T \\right\\| =sup\\left\\{ { \\left\\| Tx \\right\\| }_{ Y } \\right| x\\in X,\\ { \\left\\| x \\right\\| }_{ X }=1\\} \\quad ," then for "x" non equal to zero "{ \\left\\| T\\left( \\frac { x }{ \\left\\| x \\right\\| } \\right) \\right\\| }_{ Y }\\le \\ { \\left\\| T \\right\\| }_{ B(\\{ ,Y) }" . The mapping "T" is a linear operator , so "T\\left( \\frac { x }{ \\left\\| x \\right\\| } \\right) =\\frac { 1 }{ \\left\\| x \\right\\| } Tx" . Therefore, for all "x\\in X" the inequality
. . "{ \\left\\| Tx \\right\\| }_{ Y }\\le \\left\\| T \\right\\| \\cdot { \\left\\| x \\right\\| }_{ X }" (1)
is true.
"T\\left( { x }_{ n }-{x}_0\\ \\right) =T{ x }_{ n }-T{x}_0" , "{ \\left\\| T{ x }_{ n }-T{x}_0 \\right\\| }_{ Y }={ \\left\\| T\\left( { x }_{ n }-{x}_0\\ \\right) \\right\\| }_{ Y }" . From (1) it follows
"{ \\left\\| T\\left( { x }_{ n }-{ x }_{ 0 }\\ \\right) \\right\\| }_{ Y }\\le \\left\\| T \\right\\| \\cdot { \\left\\| { x }_{ n }-{ { x }_{ 0 } } \\right\\| }_{ X }" or
"0\\le { \\left\\| T{ x }_{ n }-T{ x }_{ 0 } \\right\\| }_{ Y }\\le \\left\\| T \\right\\| \\cdot { \\left\\| { x }_{ n }-{ { x }_{ 0 } } \\right\\| }_{ X }" (2)
By definition: "{ x }_{ n }\\rightarrow { { x }_{ 0 } }\\ \\Leftrightarrow \\ { \\left\\| { x }_{ n }-{ { x }_{ 0 } } \\right\\| }_{ X }\\rightarrow 0" .
By the Sandwich Theorem from (2) it follows "{ \\left\\| T{ x }_{ n }-T{ x }_{ 0 } \\right\\| }_{ Y }\\rightarrow 0\\quad"or "T{ x }_{ n }\\rightarrow T{ { x }_{ 0 } }" .
Comments
Leave a comment