prove ||Ax|| < ||A|| ||x||
Solution
Let us suppose that
"||Ax|| > ||A|| ||x||"
"\\Rightarrow\\frac{||Ax||}{||x||} > ||A||"
"\\Rightarrow|A\\frac{x}{||x||}| > ||A||"
Since "\\frac{x}{||x||}|" is a unit vector, therefore, from above we can write,
"\\Rightarrow ||A|| > ||A||" which constradicts
Hence
"||Ax|| < ||A|| ||x||"
Proved
Comments
Leave a comment