According to the definition of a tempered distribution, we need to prove that "\\partial^a T" is a linear and continuous functional in "S". Linearity means that for any "\\varphi_1 \\in S , \\varphi_2 \\in S" and any numbers "c_1, c_2", one has "\\partial^a T ( c_1 \\varphi_1 + c_2 \\varphi_2) = c_1 \\partial^a T ( \\varphi_1) + c_2 \\partial^a T (\\varphi_2)". Continuity means that, for any sequence "\\varphi_n \\to \\varphi" in "S", the numerical sequence "\\partial^a T (\\varphi_n) \\to \\partial^a T (\\varphi)". We prove both properties using the properties of linearity and continuity of "T" itself.
Proof of linearity:
"\\partial^a T \\left( c_1 \\varphi_1 + c_2 \\varphi_2 \\right) = (-1)^{|a|} T \\left( \\partial^a ( c_1 \\varphi_1 + c_2 \\varphi_2 ) \\right) \\\\ = (-1)^{|a|} T \\left( c_1 \\partial^a \\varphi_1 + c_2 \\partial^a \\varphi_2 \\right) \\\\ = c_1 (-1)^{|a|} T \\left( \\partial^a \\varphi_1 \\right) + c_2 (-1)^{|a|} T \\left( \\partial^a \\varphi_2 \\right) \\\\ = c_1 \\partial^a T (\\varphi_1) + c_2 \\partial^a T (\\varphi_2) \\, ."
Proof of continuity:
For any sequence "\\varphi_n \\to \\varphi" in "S", and for any multi-index "a", we have "\\partial^a \\varphi_n \\to \\partial^a \\varphi" in "S". Then
"\\partial^a T (\\varphi_n) = (-1)^{|a|} T \\left( \\partial^a \\varphi_n \\right) \\to (-1)^{|a|} T \\left( \\partial^a \\varphi \\right) \\\\ = \\partial^a T (\\varphi) \\, ."
Both defining properties are proved. Therefore, "\\partial^a T" is a tempered distribution.
Comments
Leave a comment