Solve the triangle.
A = 52°, b = 14, c = 6
Answer:
B=103.8° , a=11.3 and C=24.2°
Given:
A = 52°, b = 14, c = 6
using sine law:
"{a\\over sinA}={b\\over sinB}={c\\over sinC}"
"{a\\over sin52^o}={14\\over sinB}={6\\over sinC}" ..........................1
using cosine law:
"a^2=b^2+c^2-2bcCosA"
"a^2=196+36-2(14)(6)Cos52^o" .............2
from 2 we get,
a=11.3 ........................3
putting 3 in 1
And solving
"{11.3\\over sin52^o}={14\\over sinB}"
And
"{11.3\\over sin52^o}={6\\over sinC}"
As we see first possible solution
we get
B=103.80
C=24.20
Comments
Leave a comment