Consider a parallelogram ABCD. Show that AC2 + BD2 = AB2 + BC2 + CD2 + AD2
Let us consider a parallelogram "ABCD" and show that "AC^2 + BD^2 = AB^2 + BC^2 + CD^2 + AD^2".
According to Cosine Theorem, "AC^2=AB^2+BC^2-2AB\\cdot BC\\cos\\angle ABC" and "BD^2=BC^2+CD^2-2BC\\cdot CD\\cos\\angle BCD."
Taking into acount then in the parallelogram "ABCD" the angles "\\angle ABC" and "\\angle BCD" are supplementary, and "AB=CD,\\ BC=AD," we conclude that
"AC^2+BD^2=(AB^2+BC^2-2AB\\cdot BC\\cos\\angle ABC)+(BC^2+CD^2-2BC\\cdot CD\\cos\\angle BCD)\\\\\n=AB^2+BC^2-2AB\\cdot BC\\cos\\angle ABC+AD^2+CD^2-2BC\\cdot AB\\cos(180^{\\circ}-\\angle ABC)\\\\\n=AB^2+BC^2+CD^2+AD^2-2AB\\cdot BC\\cos\\angle ABC+2BC\\cdot AB\\cos(\\angle ABC)\\\\\n=AB^2+BC^2+CD^2+AD^2."
Comments
Leave a comment