Verify rank nullity theorem for the linear
transformation T : R
3 → R
3
defined by : 9
T(x, y, z) = (x + 2y – z, y + z, x + y – 2z)
"T:\\mathbb{R}^3\\rightarrow \\mathbb{R}^3" , "T(x,y,z)=(x+2y-z,\\ y+z,\\ x+y-2z)"
Let us find the dimension of the image:
"T(x,y,z)=\\begin{pmatrix}\n 1 & 2&-1 \\\\\n 0 & 1&1\\\\\n1&1&-2\n\\end{pmatrix}\\begin{pmatrix}\n x \\\\\n y \\\\\nz\n\\end{pmatrix}=x\\begin{pmatrix}\n 1\\\\0\\\\1\n\\end{pmatrix}+ y\\begin{pmatrix}\n 2\\\\1\\\\1\n\\end{pmatrix}+z\\begin{pmatrix}\n -1\\\\1\\\\-2\n\\end{pmatrix}"
"\\text{Im} \\ T=\\text{Span}\\begin{Bmatrix}\n \\begin{pmatrix}\n 1\\\\0\\\\1\n\\end{pmatrix}, \\begin{pmatrix}\n 2\\\\1\\\\1\n\\end{pmatrix}, \\begin{pmatrix}\n - 1\\\\1\\\\-2\n\\end{pmatrix}\n\\end{Bmatrix}= \\text{Span}\\begin{Bmatrix}\n \\begin{pmatrix}\n 1\\\\0\\\\1\n\\end{pmatrix}, \\begin{pmatrix}\n 2\\\\1\\\\1\n\\end{pmatrix}, \\begin{pmatrix}\n 2\\\\1\\\\1\n\\end{pmatrix}-3 \\begin{pmatrix}\n 1 \\\\0\\\\\n 1\n\\end{pmatrix}\n\\end{Bmatrix}= \\text{Span}\\begin{Bmatrix}\n \\begin{pmatrix}\n 1\\\\0\\\\1\n\\end{pmatrix},\n\\begin{pmatrix}2\\\\1\\\\1 \\end{pmatrix}\n\\end{Bmatrix}"
"\\text{dim } \\text{Im} \\ T=2"
Now we find the dimension of the kernel:
"T(x,y,z)=(x+2y-z,\\ y+z,\\ x+y-2z)=(0,0,0)"
We have that "y=-z, \\ \\ x=z-2y=3z" .
So, "\\text{Ker} \\ T=\\text{Span} \\begin{Bmatrix}\n\\begin{pmatrix}\n3\\\\-1\\\\1\\end{pmatrix}\n\\end{Bmatrix}"
"\\text{dim Ker}\\ T=1"
The rank-nullity theorem:
The dimension of the kernel plus the dimension of the image equals the dimension of the domain.
In this case we have "\\text{dim Ker} \\ T+\\text{dim Im}\\ T=\\text{dim} \\ \\mathbb{R}^3" and "1+2=3" .
Comments
Leave a comment