Let "B = \\begin{pmatrix}\n 1 & 0 \\\\\n 2 & 3\n\\end{pmatrix}"
What is B-1?
Given "\\begin{pmatrix}\n 1& 0 \\\\\n 2 & 3\n\\end{pmatrix}"
"A=\\begin{pmatrix}\n a & b \\\\\n c & d\n\\end{pmatrix}"
"A^{-1}=\\frac{1}{ad-bc}\\begin{pmatrix}\n d &- b \\\\\n - c & a\n\\end{pmatrix}"
"B^{-1}=\\frac{1}{1\u00d73-2\u00d70}\\begin{pmatrix}\n 3 & 0 \\\\\n -2 & 1\n\\end{pmatrix}"
"B^{-1}=\\frac{1}{3}\\begin{pmatrix}\n 3 & 0\\\\\n -2 & 1\n\\end{pmatrix}"
"B^{-1}=\\begin{pmatrix}\n 1 & 0 \\\\\n \\frac{-2}{3} & \\frac{1}{3}\n\\end{pmatrix}"
Comments
Leave a comment