Find vectors u; v € R^2 such that u is a scalar multiple of (1; 3), v is orthogonal to (1; 3); and (1; 2) =u+ v.
"\\text{From the question } u=\\alpha(1,3) \\, \\alpha \\in \\mathbb{R} \\text{ also let }v=(x,y)\\\\\n\\text{then } v\\cdot (1,3) =(x,y)\\cdot(1,3)= x+3y =0 \\implies x=-3y\\\\\n\\implies u+v=(\\alpha+x,3\\alpha+y)=(1,2) \\\\\n\\implies \\alpha+x=1 \\implies \\alpha-3y=1 \\implies y=\\frac{\\alpha-1}{3}\\\\\n\\text{also, }3\\alpha +y=2\\implies y=2-3\\alpha\\\\\n\\text{equating the two values of $y$ we have:}\\\\\n2-3\\alpha= \\frac{\\alpha -1}{3} \\implies 6-9\\alpha = \\alpha -1 \\,\\, \\text{solving this we get }\\\\\n\\alpha = \\frac{7}{10} \\text{ from above we have that } x=1-\\alpha = 1- \\frac {7}{10}= \\frac {3}{10}\\\\\n\\text{also } y =2-3\\alpha = 2-3\\times \\frac {7}{10} = \\frac {-1}{10}\\\\\n\\therefore u=\\frac {7}{10}(1,3)\\,\\, v=(\\frac {3}{10},\\frac {-1}{10})"
Comments
Leave a comment