suppose u is a subspace of r^4 defined by u=span((1,2,3,-4),(-5,4,3,2)). find an orthonormal basis of u and an orthonormal basis of u^Ï€
Let "v_1=(1,2,3,-4)", "v_2=(-5,4,3,2)", "v_3=(0,0,1,0)", "v_4=(0,0,0,1)". This is a basis of the vector space "{\\mathbb R}^4", "v_1" and "v_2" form a basis of "U". Let's apply the Gram-Schmidt's method of orthogonalization to this vector system.
Let "w_1=v_1=(1,2,3,-4)", then:
"\\langle{w_1,w_1}\\rangle=1^2+2^2+3^2+(-4)^2=30".
"\\langle{v_2,w_1}\\rangle=-5\\cdot 1+4\\cdot 2+3\\cdot 3+2\\cdot(-4)=4".
"\\langle{v_3,w_1}\\rangle=3".
"\\langle{v_4,w_1}\\rangle=-4".
Calculate "v_2-\\frac{\\langle{v_2,w_1}\\rangle}{\\langle{w_1,w_1}\\rangle} w_1=v_2-\\frac{4}{30}w_1="
"=(-5,4,3,2)-\\frac{2}{15}(1,2,3,-4)=\\frac{1}{15}(-77,56,39,38)".
Let "w_2=(-77,56,39,38)", then:
"\\langle{w_1,w_2}\\rangle=0".
"\\langle{w_2,w_2}\\rangle=(-77)^2+56^2+39^2+38^2=12030"
"\\langle{v_3,w_2}\\rangle=39".
"\\langle{v_4,w_2}\\rangle=38".
Calculate "v_3-\\frac{\\langle{v_3,w_1}\\rangle}{\\langle{w_1,w_1}\\rangle} w_1-\\frac{\\langle{v_3,w_2}\\rangle}{\\langle{w_2,w_2}\\rangle} w_2=v_3-\\frac{3}{30}w_1-\\frac{39}{12030}w_2"
"=\\frac{1}{4010}(4010v_3-401w_1-13w_2)=\\frac{1}{4010}(600,-1530,2300,1110)"
"=\\frac{1}{401}(60,-153,230,111)".
Let "w_3=(60,-153,230,111)". Then
"\\langle{w_1,w_3}\\rangle=0"
"\\langle{w_2,w_3}\\rangle=0"
"\\langle{w_3,w_3}\\rangle=60^2+(-153)^2+230^2+111^2=92230"
"\\langle{v_4,w_3}\\rangle=111".
Calculate "v_4-\\frac{\\langle{v_4,w_1}\\rangle}{\\langle{w_1,w_1}\\rangle} w_1-\\frac{\\langle{v_4,w_2}\\rangle}{\\langle{w_2,w_2}\\rangle} w_2-\\frac{\\langle{v_4,w_3}\\rangle}{\\langle{w_3,w_3}\\rangle} w_3"
"=v_4+\\frac{4}{30}w_1-\\frac{38}{12030}w_2-\\frac{111}{92230}w_3"
"=\\frac{1}{276690}(276690v_4+27669w_1-874w_2-333w_3)"
"=\\frac{1}{276690}(74987,57343,-27669,95839\n)".
Let "w_4=(74987,57343,-27669,95839)". Then
"\\langle{w_1,w_4}\\rangle=0"
"\\langle{w_2,w_4}\\rangle=0"
"\\langle{w_3,w_4}\\rangle=0"
"\\langle{w_4,w_4}\\rangle=18861957300".
We have constructed an orthogonal basis "w_1,\\,w_2,\\,w_3,\\,w_4" of "{\\mathbb R}^4". The vectors "w_1,\\,w_2" form a basis of U, because "w_1,w_2\\in Span\\{v_1,v_2\\}=U" and "\\dim U=2".
Since the vectors "w_3,\\,w_4" are orthogonal to "w_1,w_2", they form a basis of "U^{\\perp}".
To obtain orthonormal bases, one should normalize these vectors and take "\\frac{1}{\\sqrt{30}}w_1", "\\frac{1}{\\sqrt{12030}}w_2", "\\frac{1}{\\sqrt{92230}}w_3" and "\\frac{1}{\\sqrt{18861957300}}w_4" instead of them.
Comments
Leave a comment