(1)
"i^{2666}=(i^4)^{666}i^2=-1""i^{145}=(i^4)^{36}i=i"(2)
"z_1=\\dfrac{-i}{-1+i}=e^{i{3\\pi \\over 2}}(\\dfrac{\\sqrt{2}}{2}e^{-i{3\\pi \\over 4}})\\\\\n=\\dfrac{\\sqrt{2}}{2}e^{i{3\\pi \\over 4}}=\\dfrac{\\sqrt{2}}{2}(\\cos\\dfrac{3\\pi}{4}+i\\sin\\dfrac{3\\pi}{4})=-\\dfrac{1}{2}+i(\\dfrac{1}{2})\\\\\nz_2=\\dfrac{1+i}{1-i}=\\sqrt{2}e^{i{\\pi \\over 4}}(\\dfrac{\\sqrt{2}}{2}e^{i{\\pi \\over 4}})\\\\\n=e^{i{\\pi \\over 2}}=\\cos\\dfrac{\\pi}{2}+i\\sin\\dfrac{\\pi}{2}=i"
Since Z3 is not given, we will assume that it is equal to 1
Part i
"\\dfrac{z_1*z_3}{z_2}=\\dfrac{\\dfrac{\\sqrt{2}}{2}e^{i{3\\pi \\over 4}}}{e^{i{\\pi \\over 2}}}=\\dfrac{\\sqrt{2}}{2}e^{i{\\pi \\over 4}}\\\\\n=\\dfrac{\\sqrt{2}}{2}(\\cos\\dfrac{\\pi}{4}+i\\sin\\dfrac{\\pi}{4})=\\dfrac{1}{2}+i(\\dfrac{1}{2})\\\\"
Part ii
"\\dfrac{z_1*z_2}{z_3}=\\dfrac{\\sqrt{2}}{2}e^{i{3\\pi \\over 4}}*{e^{i{\\pi \\over 2}}}=\\dfrac{\\sqrt{2}}{2}e^{i{5\\pi \\over 4}}\\\\\n=\\dfrac{\\sqrt{2}}{2}(\\cos\\dfrac{5\\pi}{4}+i\\sin\\dfrac{5\\pi}{4})=-\\dfrac{1}{2}-i(\\dfrac{1}{2})\\\\"
Part iii
"\\dfrac{z_2}{z_3*z_1}=\\dfrac{e^{i{\\pi \\over 2}}}{\\dfrac{\\sqrt{2}}{2}e^{i{3\\pi \\over 4}}}=\\sqrt{2}e^{-i{\\pi \\over 4}}\\\\\n=\\sqrt{2}(\\cos(-\\dfrac{\\pi}{4})+i\\sin(-\\dfrac{\\pi}{4}))\n=1-i"
(3)
"z_1=-i=\\cos(-\\dfrac{\\pi}{2})+i\\sin(-\\dfrac{\\pi}{2})""z_2=-1-i\\sqrt{3}=2(\\cos(-\\dfrac{2\\pi}{3})+i\\sin(-\\dfrac{2\\pi}{3}))""z_3=-\\sqrt{3}+i=2(\\cos(\\dfrac{5\\pi}{6})+i\\sin(\\dfrac{5\\pi}{6}))""(z_3)^4=16(\\cos(\\dfrac{10\\pi}{3})+i\\sin(\\dfrac{10\\pi}{3}))""(z_1)^2=\\cos(-\\pi)+i\\sin(-\\pi))""(z_2)^{-1}=\\dfrac{1}{2}(\\cos(\\dfrac{2\\pi}{3})+i\\sin(\\dfrac{2\\pi}{3}))""\\dfrac{(z_3)^4}{(z_1)^2}\\cdot(z_2)^{-1}=8(\\cos(5\\pi)+i\\sin(5\\pi))=-8"(a)Â "P(z)=z^2+a, a>0"
"z^2+a=0=>z_1=-i\\sqrt{a}, z_2=i\\sqrt{a}"(b)Â "P(z)=z^3-z^2+z-1"
"z^3-z^2+z-1=0""z^2(z-1)+(z-1)=0""z_1=1, z_2=-i, z_3=i"(c)Â "z^3-1=0"
"(z-1)(z^2+z+1)=0""z_1=1, z_{2,3}=\\dfrac{-1\\pm i\\sqrt{3}}{2}""z_1=1, z_2=-\\dfrac{1}{2}-i\\dfrac{\\sqrt{3}}{2}, z_3=-\\dfrac{1}{2}+i\\dfrac{\\sqrt{3}}{2}"(d)
"8-8i=8\\sqrt{2}(\\cos(-\\dfrac{\\pi}{4})+i\\sin(-\\dfrac{\\pi}{4}))""k=0: 2^{7\/6}(\\cos(-\\dfrac{\\pi}{12})+i\\sin(-\\dfrac{\\pi}{12}))""k=1: 2^{7\/6}(\\cos(\\dfrac{7\\pi}{12})+i\\sin(\\dfrac{7\\pi}{12}))""k=2: 2^{7\/6}(\\cos(\\dfrac{5\\pi}{4})+i\\sin(\\dfrac{5\\pi}{4}))=-2^{2\/3}-i(2^{2\/3})"(e)
"w=1+i=\\sqrt{2}(\\cos(\\dfrac{\\pi}{4})+i\\sin(\\dfrac{\\pi}{4}))""w^3=2^{3\/2}(\\cos(\\dfrac{3\\pi}{4})+i\\sin(\\dfrac{3\\pi}{4}))""z^4=w^3"
"k=0: 2^{3\/8}(\\cos(\\dfrac{3\\pi}{16})+i\\sin(\\dfrac{3\\pi}{16}))""k=1: 2^{3\/8}(\\cos(\\dfrac{11\\pi}{16})+i\\sin(\\dfrac{11\\pi}{16}))""k=2: 2^{3\/8}(\\cos(\\dfrac{19\\pi}{16})+i\\sin(\\dfrac{19\\pi}{16}))""k=3: 2^{3\/8}(\\cos(\\dfrac{27\\pi}{16})+i\\sin(\\dfrac{27\\pi}{16}))"(4)
"P(z)=z^2+\\lambda z-6""z=i"
"(i)^2+\\lambda i-6=0""\\lambda=-7i"
Comments
Leave a comment