"dimR(V)=8\\\\\ndimR(U)= 4\\\\\ndimR(W)= 5"
We know that
"max \\{0, dimR(U) +dimR(W) -dimR(V)\\}\\leq \\\\\n\\leq dim \\space R (UnW) \u2264 min (dimR(U) ,dimR(W)),\\\\\nmax \\{0, 4 +5 -8\\}\u2264dimR (UnW) \u2264min(4,5),\\\\\nmax \\{0, 1\\}\u2264dimR (UnW) \u2264min(4,5),\\\\\n1\u2264 dimR (UnW) \u22644\\\\"
Hence , the possible values of dimR(UnW) is 1, 2, 3, 4.
Comments
Leave a comment