Any inner product induces a norm given by
Proof. The axioms for norms mostly follow directly from those for inner products.
If "u, v \u2208 V" and "\u03b1 \u2208 F," then
(i)
"\\|v\\|=\\sqrt{\\langle v, v\\rangle}\\geq0,"since "\\langle v, v\\rangle\\geq0" with equality if and only if "v = 0."
(ii)
"\\|\\alpha v\\|=\\sqrt{\\langle \\alpha v,\\alpha v\\rangle}=\\sqrt{|\\alpha|^2\\langle v, v\\rangle}""=|\\alpha|\\sqrt{\\langle v, v\\rangle}=|\\alpha|\\|a v\\|"
(iii) The triangle inequality
Cauchy-Schwarz inequality
If "V" is an inner product space, then
for all "u, v \u2208 V ." Equality holds exactly when "u" and "v" are linearly dependent.
Using the Cauchy-Schwarz inequality,
"=\\langle u, u\\rangle+\\langle u, v\\rangle+\\langle v, u\\rangle+\\langle v, v\\rangle"
"=\\|u\\|^2+\\langle u, v\\rangle+\\overline{\\langle u, v\\rangle}+\\|v\\|^2"
"=\\|u\\|^2+2Re\\langle u, v\\rangle+\\|v\\|^2"
"\\leq\\|u\\|^2+2|\\langle u, v\\rangle|+\\|v\\|^2"
"\\leq\\|u\\|^2+2\\|u\\|\\|v\\|+\\|v\\|^2"
"=(\\|u\\|+\\|v\\|)^2"
Taking square roots yields
since both sides are nonnegative.
Therefore "\\|v\\|=\\sqrt{\\langle v, v\\rangle}" is a Norm.
Comments
Leave a comment